1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B

Slides:



Advertisements
Similar presentations
南 通. 南通概述 南通,位于江苏省东部, 东抵黄海,南望长江。 “ 据江 海之会、扼南北之喉 ” ,隔江 与中国经济最发达的上海及 苏南地区相依,被誉为 “ 北上 海 ” 。 南通也是中国首批对 外开放的 14 个沿海城市之一 ,被称为 “ 中国近代第一城 ” 。 南通面临海外和内陆两大经 济辐射扇面,素有.
Advertisements

1 天天 5 蔬果 國立彰化特殊教育學校 延杰股份有限公司營養師:陳婷貽. 2 蔬果彩虹 579 蔬果彩虹 歲以內兒童,每天 攝取五份新鮮蔬菜水 果,其中應有三份蔬 菜兩份水果 蔬菜份數水果份數總份數 兒童 325 女性 437 男性 549.
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
語言與文化通識報告 - 台日年菜差異 - 指導老師 : 葉蓁蓁 小組 : 日本微旅行 組員 :4a21b032 吳采玲 4a21b037 沈立揚 4a 洪雅芳 4a 陳楚貽 4a 王巧稜.
均衡推进,确保质量 08学年第一学期教学工作会议 广州市培正中学
黑木耳.
投資權證13問 交易所宣導資料(104) 1.以大盤指數為標的之權證,和大盤指數的連動性,為什麼比和期交所期指的連動性差?
如何把作文写具体.
第一章 人口与环境 第一节 人口增长模式.
第一节 人口与人种 第一课时.
解读我党发展史 思索安惠美好明天 主讲人:王辰武.
高端楼盘工程招(议) 标管理方案 成本管理中心
第5课 长江和黄河.
銓敘部研究規劃自願退休公務人員月退休金起支年齡延後方案座談會
瓦罐湯 “瓦缸煨汤”是流行于南方民间的一种风味菜肴。它采用一种制特的大瓦缸,其缸底可以烧火,缸内置有铁架,厨师将装有汤的小瓦罐一层层地码入缸内的铁架上,然后点燃木炭,借用木炭火产生的高温将瓦罐内的汤煨熟。
1.數學的難題 如下圖所示,你知道表格中的問號應填入什麼數字嗎?
第九章 欧氏空间 §1 定义与基本性质 §2 标准正交基 §3 同构 §4 正交变换 §5 子空间 §6 对称矩阵的标准形
第九章 欧氏空间 §1 定义与基本性质 §6 对称矩阵的标准形 §2 标准正交基 §7 向量到子空间的 距离─最小二乘法 §3 同构
合肥学院外国语言系2012年度 学生工作表彰大会.
真题模拟 主讲:凌宇 时间:6月9日.
树立信心,沉着应战,吹响中考冲锋号 ——谈语文学科的复习备考及考试技巧.
第十二章 小组评估 本章重点问题: 评估的设计 测量工具的选择和资料的收集 与分析.
请大家欣赏龙岩, 新罗区 上杭,武平, 连城,长汀, 永定,漳平 小吃和特产.
游 泳 理 论 课 位育中学 高蓉.
二代健保補充保費 代扣項目說明 簡報.
1.某公司需购一台设备,有两个方案,假定公司要求的必要报酬率为10%,有关数据如下:
第4课 “千古一帝”秦始皇.
第一节 人口与人种 光山一中 屈应霞.
第五章 二次型.
抚宁县第五中学 教学暨新课改推进工作会.
合 同 法 主讲人: 教材:《合同法学》(崔建远) 2017/3/10.
《社会体育指导员讲座》课程整体设计介绍 席永 副教授 2015 年 6 月
专项建设检查工作总结 本科试卷 毕业论文(设计) 合格课程 专项检查工作基本情况 专项建设的工作内容 专项建设检查工作情况
班級老師:潘盈仁 班級:休閒三甲 學號:4A0B0124 學生:柯又瑄
告状 一位叫杨鲁的孩子,告他父亲杨庆的状。他极其认真地向父亲所在的工厂党委书记指控,说父亲不让儿子“游戏人间”,每天“画地为牢”,要儿子“咬文嚼字”,稍不满意,还要“入室操戈”。他声称父亲打他总是“重于泰山”,不象母亲打他“轻如鸿毛”。并且表示“庆父不死,鲁难不已”。
學校社工師服務與家訪技巧 三峽區駐區學校社工師 陳若喬.
第三部分 区域可持续发展 第二单元 区域可持续发展 第7课 资源跨区域调配. 第三部分 区域可持续发展 第二单元 区域可持续发展 第7课 资源跨区域调配.
钢铁工业产能置换与相关政策 工业和信息化部产业政策司 辛 仁 周 二〇一五年三月二十八日.
巧用叠词,妙趣横生.
忠孝國小自立午餐老師的叮嚀 教師指導手冊.
响沙之王——银肯响沙 响沙之王——银肯响沙.
5.
目 錄 壹、緣由 貳、問題解析 參、問題歸納 肆、因應對策 伍、評鑑獎勵 陸、追蹤考核 1.
腸病毒防治宣導 主講者 陳玟吟護理師.
内蒙古景观与区划 人文景观 人文景观是指有人为因素作用形成(构成)的景观。人为因素主要有文化、建筑等因素。
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
新员工职业化培训课程 主讲人 人力资源部 二零零五年六月.
1-2 正負數的乘除法.
如何寫工程計畫書 臺北市童軍會考驗委員會 高級考驗營 版.
第六章 集合的基数 在前面我们的基数简单的看作集合元素的个数,这对于有限集来说没有问题,但对于无限集而言,“元素的个数”这个概念是没有意义的,那么两个集合的“大小”,“相同”的确切含义是什么呢?形式的描述元素“多少”的概念数学工具是函数。 先讨论自然数集合,有限集,无限集。
四、投影运算 在数据库中, 用关系来描述数据时常用投影运算进行数据操作。
第5章 关系 Relation.
集合的等势 基数的定义 基数的运算 基数的比较
1.2 有理数 第1课时 有理数 伏家营中学 付宝华.
4.偏序集合中的几个特殊元素 定义:设(A,≤)是一个偏序集合, BA,若存在一个元素bB,对所有b‘B都有b’≤b, 则称b是B的最大元;若都有b≤b‘, 则称b是B的最小元。特别B=A时,称b为A的最大元或最小元。 例:A1={1,2,3,4,5,6},(A1,) 1为A1的最小元,6为A1的最大元.
白城师范学院经济管理系 成 本 会 计 学 制作:吴威名.
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§2 闭区间上连续函数的性质 实数完备性理论的一个重要作用就是证 明闭区间上连续函数的性质,这些性质曾 经在第四章给出过.
1.2 子集、补集、全集习题课.
定义19.13:设p,qP(Y),若{p}╞q且{q}╞p,则称p,q语义等价,记为p │==│ q
例:循环群的每个子群一定是循环群。 证明:设H是循环群G的子群,a是G的生成元。 1.aH
1.集合 , S1={a},S2={{a}},S3={a,{a}} aS3, S1  S3 {a}S3,S2  S3,
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§3 布尔格与布尔代数 一、布尔代数 定义16.10:有补分配格称为布尔(Boole)格, 习惯上写成(B;≤)。
第五章 函数 函数也叫映射,交换,是数学中的一个基本概念,在高数中,函数的概念是从变量的角度提出来的,这种函数一般是连续或间断连续的函数,这里将连续函数的概念推广到离散量的讨论,即将函数看作一种特殊的二元关系。
陪集 例:三次对称群S3={e,1, 2, 3, 4, 5}的所有非平凡子群是:
定理15.8:对f(x)F[x],g(x)F[x], g(x)0,存在唯一的q(x),r(x)F[x], degr(x)
1.8 完全平方公式(一) 锦州市实验学校 数学组(3).
集合的等势 基数的定义 基数的运算 基数的比较
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B 2.一个A上的二元关系R称为循环的,如果对任意的a,b,cA,若aRb,bRc,必有cRa.证明:R是自反和循环的当且仅当R是等价关系

引理(一):若A、B都是可列集,A∩B= ,则A∪B是可列集。 证明:因为A、B都是可列集,故由定理(二)得,A中的元素可以排成一个无穷序列的形式:a0,a1,a2,a3,a4,…, B中的元素可以排成一个无穷序列的形式:b0,b1,b2,b3,b4,…,又因A∩B=,故可构造N到A∪B的双射

定理4.7:两个可列集之并仍为可列集。 构造B1=B- (A∩B), 则A∩B1=,A∪B1=A∪B 推论:有限个可列集之并仍为可列集。 定理4.8:可列个可列集之并仍为可列集 考虑互不相交的情况 例:证明有理数集Q是可列集。 首先证明正有理数集是可列集 Q+={n/m|m,n互质,n,m0} 与有序对有关

定理4.9:[0,1]是不可列集。 证明:显然[0,1]不是有限集。 假设[0,1]是可列集。利用区间套定理导出矛盾 称[0,1]为连续统,基数记为,c 有时也记为1 例:证明|(0,1)|=|[0,1]|= 构造(0,1)到[0,1]之间的双射

定理4.10:设A是有限集或可列集,B是任一无限集, 则|A∪B|=|B|。 定理4.11:设实数a,b且a<b,则[a,b],[a,b),(a,b],(a,b)的基数均为c。 实数集R的基数 (0,1)到R的双射f: f(x)=tg(x-/2) |R|=|(0,1)|=c 线段上的点数和实数轴上的点数是一样的

整数集,非负整数集,正整数集,有理数集它们的基数是0 实数集为 设P表示无理数集 R=P∪Q, |Q|=0, 由定理4.10知, |R|=|P∪Q|=|P|, P的基数是

作业:P76 4,5,6,7,8,11,12