Mechanics Exercise Class Ⅱ

Slides:



Advertisements
Similar presentations
前言 何謂能源 能源的種類 我們為何要節約能源 如何正確安全使用能源 節約能源的方法 節約能源的技術 結論與心得 資料來源.
Advertisements

Chapter 3 動力學 DYNAMICS 1.動力學 研究力與運動物理量的關係。 運動學相關物理量 動力學 力相關物理量 力 動量 動能
第二章 运动的守恒量和守恒定律 §2-1 质点系的内力和外力 质心 质心运动定理 §2-2 动量定理 动量守恒定律
周柏伶 國立台中女中輔導主任 彰師大輔導與諮商研究所碩士 諮商心理師
移动与搬运病人 主讲:仝春兰.
我们会赞叹生命之花的绚丽和多姿,也会歌颂生命之树的烂漫和青翠,但是生命是如此脆弱……
自然運動 伽利略在運動學上的成就,奠定了牛頓動力學的基礎。伽利略成功的描述地球上物體的拋物運動,其主要基於兩個基本概念:
3-3 Modeling with Systems of DEs
普通物理 General Physics 5 – Newton's Law of Motion
普通物理 General Physics 6 – Friction, Drag, and Centripetal Force
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
D. Halliday, R. Resnick, and J. Walker
位移與向量(Displacement and Vector)
守恆律 若已知外力形式非為常數或時間之函數,亦非速度的函數,而是位置的函數,則物體的運動狀態仍可由牛頓運動定律得到:
4. Newton's Laws 牛頓定律 The Wrong Question 問錯題
高中資優計畫物理實驗 --高一下學期(2005) 古煥球(物理館101室) 講解及實驗時間: 星期六下午1:00-4:00 (三小時) 講解室: 物理館019室 實驗室: 綜三館普物實驗室(助教負責) 實驗課本: 清華大學[普通物理實驗課本] + 講義.
普通物理 General Physics 15 - Simple Harmonic Motion
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
普通物理 General Physics 8 – Conservation of Energy
第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。
附加内容 “AS”用法小结(1).
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
普通物理 General Physics 9 - Center of Mass and Momentum
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
普通物理 General Physics 10 - Rotational Motion I
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
普通物理 General Physics 12 - Equilibrium, Indeterminate Structures
普通物理 General Physics 23 - Finding the Electric Field-II
CHAPTER 7 轉動 第一節 定軸轉動 第二節 角動量與轉動慣量 第三節 角動量守恆.
多相流搅拌器 练习 7.
Fundamentals of Physics 8/e 28 - Magnetic Force
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
First-Law Analysis for a Control Volume
Neutron Stars and Black Holes 中子星和黑洞
11-1 慣性矩與極慣性矩 11-2 平行軸定理 11-3 斷面模數與迴轉半徑 11-4 簡單面積之慣性矩 11-5 組合面積之慣性矩.
Unit 1.
句子成分的省略(1).
Short Version : 9. Systems of Particles 短版: 9.多質點系统
Fundamentals of Physics 8/e 0 – Table of Contents
普通物理 General Physics 21 - Coulomb's Law
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
Guide to a successful PowerPoint design – simple is best
Summary for Chapters 24 摘要: 24章
Chapter 10 : Balance of Machinery
科學遊戲實作_SM的魔法教室 私立協同中學物理教師 何世明.
動量與能量.
第一章 力和运动 §1-1 质点运动的描述 §1-2 圆周运动和一般曲线运动 §1-3 相对运动 常见力和基本力 §1-4 牛顿运动定律
物體的運動包含質心的運動與繞質心的轉動:
运动学 第一章 chapter 1 kinematices.
12. Static Equilibrium 靜力平衡
2 滾動、力矩角、動量.
Q & A.
Part One: Mechanics 卷一:力學
Chapter 10 Mobile IP TCP/IP Protocol Suite
Nucleon EM form factors in a quark-gluon core model
遊戲設計 Special Effects.
Ideal Gas.
动词不定式(6).
汽車的保險桿應如何設計? 若有兩款不同的設計,一為十分堅固的鋼鐵設計造型,另一為多槽式的塑膠設計。其可能的優缺點為何?
12. Static Equilibrium 靜力平衡
句子成分的省略(3).
定语从句(4).
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Principle and application of optical information technology
Presentation transcript:

Mechanics Exercise Class Ⅱ

Review Ⅰ Angular Quantities Angular displacement Ⅱ Rotational Inertia Angular velocity Angular acceleration Ⅱ Rotational Inertia Ⅲ The Parallel-Axis Theorem

Angular Momentum of a System of Particles Review Ⅳ The Kinetic Energy of the rolling (克尼希定理,漆安慎p240) Ⅴ Torque Ⅵ Angular Momentum Angular Momentum of a Particle Angular Momentum of a System of Particles Angular Momentum of a Rigid Body

Review Ⅶ Work and Rotational Kinetic Energy Ⅷ Newton’s Second Law in Angular Form Particle: System of Particles: A Rigid Body With fixed axis: Ⅸ Conservation of Angular Momentum a constant Ⅶ Work and Rotational Kinetic Energy

The key idea here is that the angular acceleration is [1.] A wheel rotating about a fixed axis through its center has a constant angular acceleration of 4.0rad/s2. In a certain 4.0s interval the wheel Turns through an angle of 80rad. (a) What is the angular velocity of the wheel at the start of the 4.0s interval? (b) Assuming that the wheel starts from rest, how long is it in motion at the start of the 4.0 interval? P240 18 Solution : The key idea here is that the angular acceleration is constant so we can use the rotation equation: ( Eq11-13) Substituting the given data and solving for we find,

(b) If the wheel starts from rest, the key idea here is that the initial angular velocity is 0, so we can use the rotation equation: Inserting the given data and solving for ,we can obtain,

The key idea here is each blade can be [2.] Each of the three helicopter rotor blades shown in the Fig. is 5.20m long and has a mass of 240kg. The rotor is rotating at350rev/min. (a) What is the rotational inertia of the rotor assembly about the axis of rotation ? (Each blade can be considered to be a thin rod rotated about one end). (b) What is the total kinetic energy of rotation? P242 38 Solution : 5.20m The key idea here is each blade can be considered to be a thin rod rotated about one end, so the total rotational inertia of the rotor blades can be written as : (1) The second key idea is the rotational inertia of a thin rod rotated about its end is (p227 Tab) (2) Do it by yourselves and remember it!

Combine the Eq (1) and (2) and substitute the given data ,we can get the total rotational inertia (b) Substituting and into Eq 11-27, we find

The law of conservation of mechanical energy [3.]A uniform spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearings. A massless cord passes around the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley’s axel; the cord does not slip on the pulley. What is the speed of the object after it falls a distance h from rest? Use energy consideration. P244. 66 The law of conservation of mechanical energy Solution : The key idea is we consider the spherical shell, the pulley and the small object as a system, so the system is isolated ,its total energy can not change. We apply the law of conservation of energy to this system potential energy rotational kinetic energy (1) 1 2

The second key idea is the cord does not slip on the pulley , so the spherical shell and the pulley has the same liner speed and we can write (2) Combine the Eq (1) and (2) and substitute the ,we can get speed of the object

The law of Conservation of Angular Momentum [4 .] A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axis through the center of the disk. The platform has a mass of 150kg, a radius of 2.0m, and a rotational inertia of 300kg.m2about the axis of rotation. A 60kg student walks slowly from the rim of the platform toward the center .If the angular speed of the system is 1.5rad/s when the student starts at the rim , what is the angular speed when she is 0.5m from the center? P272 54 Solution : The law of Conservation of Angular Momentum R The key idea is we consider the platform and the student as a system, the external Torque acting on the system is zero, so the angular momentum of the system remains constant. (1)

R Substituting the and into the Eq (1) and solving for we find The law of conservation of angular momentum can only be used in inertial system !

[例5]已知:轻杆,m 1 = m , m 2 = 4m , 油灰球 m, m 以水平速度v 0 撞击 m 2 ,发生完全非弹性碰撞 m v 0 = (m + m 2 ) v 解二: m 和 (m1 + m 2 )系统动量守 恒 m v 0 = (m + m 1 + m 2 ) v 解三: m v 0 = (m + m 2 ) v + m 1 • 2v 以上解法对不对? m2 m1 m A

因为相撞时轴A作用力不能忽略不计,故系统动量不守恒。 因为重力、轴作用力过轴,对轴力矩为零,故系统角动量守恒。 m2 m1 m A Ny Nx 由此列出以下方程: 或: 得:

轴作用力不能忽略,动量不守恒,但对 o 轴合力矩为零,角动量守恒 注意:区分两类冲击摆 (1) o l m M 质点 质 点 柔绳无切向力 (2) Fx Fy 质点 定轴刚体(不能简化为质点) 水平方向: Fx =0 , px 守恒 m v 0 = ( m + M ) v 对 o 点: , 守恒 m v 0 l = ( m + M ) v l 轴作用力不能忽略,动量不守恒,但对 o 轴合力矩为零,角动量守恒 (漆安慎P256, 7.4.2)

= = [例6] 计算下列刚体的转动惯量I:P254 7.3.2 7.3.3 1.图示实验用的摆, , 近似认为圆形部分为均质圆盘,长杆部分为均质细 杆.求:对过悬点且与摆面垂直的轴线的转动惯量. 解: ) 均匀细杆( 均匀圆柱( 将摆分为两部分: 则 = 用平行轴定理 = I=0.14 + 2.51= 2.65

2.在质量为M半径为R的均质圆盘上挖出半径为r的两个圆孔, 与盘面垂直的轴线的转动惯量. 解: 设未挖两个圆孔时大圆盘转动惯量为I 如图半径为r的小圆盘转动惯量为 和 则有 ( )

[例7]质量为m长为 的均质杆,其B端放在桌面上,A端用手支住,使杆成水平 [例7]质量为m长为 的均质杆,其B端放在桌面上,A端用手支住,使杆成水平.突然释放A端,在此瞬时,求:(1)杆质心的加速度,(2)杆B端所受的力. P254 7.5.4 [解 答] 取杆为隔离体,受力分析及建立 坐标如图。规定逆时针为转动正方向。依据质心运动定理有: B 依据转动定理: ? 依据角量与线量关系:

此外, B 联立上述四个方程求得: