2.1矢量的概念与矢量的线性运算 一、矢量的概念 矢量: 既有大小又有方向的量. 矢量表示: 或 M1M2 矢量的模: 矢量的大小. 或

Slides:



Advertisements
Similar presentations
2 、 5 倍数的特征 学习目标 1. 掌握 2 、 5 倍数的特征,能判 断一个数是否是 2 、 5 的倍数。 2. 理解奇数和偶数的意义,正 确判断一个数是奇数还是偶数。
Advertisements

中外领导力 的 跨文化 比较分析 主讲人:. 壹 领导力理论 中国古代 “ 修身、齐家、治国、平天下 ” —— 孔子(儒家思想 ) 庄子(道家学派) 老子(道家学派)
頭皮的健康與診斷 頭皮保養的目的 乾性頭皮的產生原因及處理 油性頭皮的產生原因及處理 植物精油芳香療法的認識與應用 第 3 章 頭皮部位的處理 ………………………………………………………………………….…
窮人與富人的決定性差異 書名: 窮人與富人的距離 0.05mm 作者:張禮文出版社:海鴿. 窮人與富人的決定性差異 窮人和富人的關鍵差異不在口袋金錢的多寡,而 在腦袋。這本書將全面解開窮人之所以貧窮,而 富人之所以富裕的所有奧秘。 窮人和富人的關鍵差異不在口袋金錢的多寡,而 在腦袋。這本書將全面解開窮人之所以貧窮,而.
一、研究背景 植物组培育细胞培养源于 19 世纪后半 叶,当时植物细胞全能性的概念还没有 完全确定。人们便对此进行研究。 目前,植物组培已经变成了一种常规 的技术,广泛应用于植物的脱毒,快繁 ,基因工程,一串研究,次生代谢物质 生产,工厂化育苗等多方面。
大学生入党积极分子培训教材 主编:蔡中华 曹培强.
水痘.
29.2 三视图.
第二章營建規劃施工與管理 營建工程過程不外乎規劃、設計、施工、管理等。
國立金門高級農工職業學校 水產養殖科 游育霖
程啸 (法学博士、清华大学法学院副教授、硕士生导师、洪堡学者)
九寨沟 领略人间仙境.
机关公文基础知识 黄晓璐.
鞍钢冷轧钢板(莆田)有限公司 毕业生招聘宣讲会
《数学》( 新人教版.七年级 上册 ) 第一章 有理数 授课人:三元中学 苏鼎明.
第二單元 校園的昆蟲 1. 校園的小動物 2. 昆蟲一族 3. 昆蟲變變變 4. 我的昆蟲寶貝 5. 昆蟲博覽會 吳端敏 製.
机械工业发展史.
第十章 暑 温 辽宁中医药大学 温病学教研室.
桥城中学创建广东省现代教育技术实验学校自查报告
熱帶雨林對人類的 局限和可能性.
第二課 鬼 頭 刀 廖鴻基.
6-3 玻璃製品 一、平版玻璃 將熔融的玻璃漿由滾筒間流過,可不斷製造較 大連續之玻璃,可分為 (一)透明玻璃:表面光滑清透。
钢筋混凝土楼梯模板施工 学习目标 主要内容.
2014年国家义务教育质量监测 体育现场测试说明 浙江省教育质量监测中心 2014年11月.
長榮中學高中部104年甄選入學 作業相關事項說明會
指導老師:曾憲正 老師 組員:公廣2A 4980M089鄭欽鴻 M039鄭仁凱 2B M060呂明耿
昆蟲總動員 三年級教學群.
风 温 主讲人 王洪京.
东方底特律—— 大美十堰.

春 温 主讲人 王洪京.
市场营销原理与实训 市场营销策略模块 项目五 产品策略.
乳房护理 主编:卢荣华.
第四章 室内设计与人体工程学 第一节 人体工程学与室内设计 人体工程学也叫人机工程学、人类工效学、人类工程学、工程心理学、宜人学等。
重庆市渝州工程勘察设计技术服务中心---刘刚 2013年3月29日
4个故事 在很久很久以前….
前列腺结石 山西医科大学第一医院 王靖宇.
全日制义务教育物理课程标准 ——“运动与相互作用”主题解读及实施建议
第十一章 结构施工图 11-1 概述 一、结构施工图(结施):P308
第九章 居住区规划 §1、居住区规划的任务与编制.
人教版七年级下册第七章第四节 人教版8年级下册第五章第二节 北方地区和南方地区 制作:克拉玛依市独山子第一中学地理组.
汽车维修基础 锉削的操作方法 制作人:庹鉴.
4 家具与室内陈设设计 本章提要 本章主要介绍人体工学、家具与室内陈设设计的基本知识及其内涵。其中包括人体工学概述,家具的类型,家具在室内空间环境中的作用,家具的选用与布置,室内陈设的意义、作用和分类,室内陈设的选择与布置,以及常见空间陈设品的应用等内容。
2010高考中国地理 复习系列课件 福建省长泰一中 姚秀元
昆虫 昆虫的认识 制作昆虫标本方法与过程 1 2.
2014年下学期C1403 第21周家校互联.
“仙居恩施”市情讲座 恩施市委党校 陈 平.
第3章 建筑剖面设计.
统计图的选用(二).
第3章.建筑剖面设计 学习要求与学习重点 1. 学习要求:熟悉建筑各部分高度、层数、层高的确定;掌握建筑空间的组合和利用;能够根据建筑的使用要求合理地确定建筑的剖面形状和尺寸。 2.学习重点:掌握建筑各部分高度的确定及层数、净高、层高的概念;掌握室内外高差确定的依据;掌握建筑空间的利用的方法。
趣味硬币.
引自中山大学研究生,40余项国家专利获得者,著名低视力弱视治疗专家及发明家刘东光教授的观点
静脉剥脱器介绍 北京普益盛济科技有限公司.
人教版八年级地理上册 第三章第三节(第2课时) 水资源.
楼层与地层 水平分隔建筑空间的构件,楼层分隔上下空间,地层分隔底层空间并与土壤直接相连。 楼层的结构层为楼板,地层的结构层为垫层。
絲 綢 之 路 育 英 國 中 陳 昱 伶.
学习单元3 其它焊接方法.
公文写作与常见病例分析.
焊接结构的不足之处大多反映在焊接接头上的问题,主要有以下几方面:
名片礼仪 授课人:三原职教中心 安小艳.
机械制图 识图基础知识讲解 编制:王应.
年 和 電 鍍 原理製程教育訓練.
臺北市政府教育局96學年度第1學期 學生校外會 學生交通安全校園巡迴宣講題目: 交通(機車)事故預防與 處理 台北市汽車駕駛訓練中心 製作.
中国的降水.
第一節 餐飲服務的定義及範圍 3-4 銼削姿勢與銼刀使用方法 銼削姿勢 銼削方法 銼刀與銼削注意事項.
2019/5/19 第 十 章 节流机构.
鉗 工.
水中生物.
第八章 建筑物的防潮 防水构造.
第18章 工业化建筑体系.
Presentation transcript:

2.1矢量的概念与矢量的线性运算 一、矢量的概念 矢量: 既有大小又有方向的量. 矢量表示: 或 M1M2 矢量的模: 矢量的大小. 或 | | 单位矢量: 模长为1的向量. 或 零向量: 模长为0的向量.

自由矢量: 不考虑起点位置的矢量. 相等矢量: 大小相等且方向相同的矢量. 负矢量: 大小相等但方向相反的向矢量. 向径: 空间直角坐标系中任一点 与原点构成的矢量.

二、向量的加减法 [1]. 加法: (平行四边形法则) (平行四边形法则有时也称为三角形法则) 特殊地:若 ‖ 分为同向和反向

向量的加法符合下列运算规律: (1)交换律: (2)结合律: (3) 进一步: 任意有限个向量加法的法则 将已知向量平移,使得后一个向量的起点与前一个向量的终点重合,则以第一个向量的起点为起点,最后一个向量的终点为终点构成的向量为它们的和向量。若正好封闭,则和向量是零向量。

[2] 减法 两个向量的和与差,实际是以已知两向量为两相邻边的平行四边形的两条对角线的长。

三、矢量与数的乘法 [1]. 定义

[2]. 数与向量的乘积符合下列运算规律: (1)结合律: (2)分配律: 定理

证 充分性显然; 必要性 ‖ 两式相减,得

按照向量与数的乘积的规定, 上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.

四、共线或共面的矢量 1.定义:把一组矢量平行移到同一个起点后,如果它们在同一条直线或同一个平面上,这组矢量就叫做共线的矢量或共面的矢量。 2.两个矢量的夹角:把两个矢量 和 移到同一个起点时,所夹的不超过 的角,叫做这两个矢量的夹角。 3.定理1:如果已知两个矢量共线,且其中一个不妨设为 ,不是零矢量,那么存在一个数 ,使得另一个矢量 可以表示为数 与矢量 的乘积,即 推论:两个矢量 与 共线的充要条件时存在不同时为零的数 和 使得它们的线性组合

4.定理2:如果矢量 共面 ,且其中至少有两个矢量(不妨设为 )不共线,那么存在两个数 使得第三个矢量 可表示为 。 5.推论:3个矢量 共面的充要条件是存在不同时为零的数 ,使得它们的线性组合

例1 化简 解:原式

例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形. 证 与 平行且相等, 结论得证. 作业: