在國一「放大圖與縮小圖」的單元中,我們知道放大圖或縮小圖與原圖之間,有什麼的關係呢?

Slides:



Advertisements
Similar presentations
2014 年浙江省数量资料 华图网校 刘有珍 数字推理 年份题量数字规律 三级等差 2. 和递推 3. 幂次修正 4. 倍数递推 5. 倍数递推 6. 特殊差级 7. 倍数递推 8. 倍数递推 9. 积递推 10. 分数数列
Advertisements

中垂線之尺規作圖與性質 公館國中 蘇柏奇老師 興華高中 馬鳳琴老師 興華高中 游淑媛老師. 2 中垂線的尺規作圖 作法: 已知: 求作: 的中垂線 Q : 直線 CD 真的是中垂線嗎 ? A B C D 1. 以 A 為圓心,適當長為半徑劃弧 2. 以 B 為圓心,相同長度為半徑劃弧 兩弧相交於 C,D.
12.1 轴对称( 1 ) 给我最大快乐的, 不是已懂的知识, 而是不断的学习 高斯.
變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
对效果、信度与区分度的 认识 ——以初中数学学业考试中的试题为例
龙泉护嗓5班 优秀作业展.
服务热线: 菏泽教师招聘考试统考Q群: 菏泽教师统考教育基础模拟题解析.
明愛屯門馬登基金中學 多邊形的種類及內角和 中二級數學科.
第23课时 现代中国的科学技术与 文化教育事业.
第一章 民法概述 一、民法概念 P4 二、民法的调整对象 三、民法的分类 四、民法的渊源 P10 五、民法的适用范围(效力范围)
第七章 财务报告 财务报告 第一节 财务报告概述 一、财务报告及其目标: 1、概念:财务报告是指企业对外提供的反映企业某一特定日期
发展心理学 王 荣 山.
圓心角、圓周角與弦切角 圓心角 圓周角 弦切角 圓內角 圓外角 ∠AOB= ∠APB= ∠APC= A B P m0 A B P m0 A
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
政治第二轮专题复习专题七 辩 证 法.
第七章 财务报告 主讲老师:王琼 上周知识回顾.
§4-2平行與四邊形 重點: (1)過線外一點作平行線 (2)平行四邊形的探討 (3)梯形的探討 (4)平行四邊形與梯形的差異
放大圖與縮小圖 相似形的意義 平行線截比例線段
四邊形 對邊、對角與對角線.
热身练习 1、如图,已知AD⊥BC,BD=CD,则△ABC是什么三角形?请说明理由
下列敘述正確的打「○」,錯誤的打「×」。 ( )兩個等腰直角三角形一定相似。 ( )兩個梯形一定相似。 ( )兩個正六邊形一定相似。
一、认真审题,明确作图目的。 二、作图按投影规律准确无误。 三、图线粗细分明。 四、需要保留作图线的一定保留。
平行四邊形的性質 平行四邊形的判別 特殊平行四邊形 自我評量.
李伟庭老师 (彩虹村天主教英文中学老师) 相似三角形.
八年级上册 第十三章 轴对称 等腰三角形及其性质 湖北省通山县教育局教研室 袁观六.
搭配課本第119頁. 搭配課本第119頁 圖1 搭配課本第119頁 圖2 搭配課本第119頁.
簡介與使用說明 『數學的學習注重循序累進的邏輯結構』
1.5 三角形全等的判定(1)
辨認三角形的種類 小學三年級數學科.
搭配頁數 P.35 比例式 1.比的前項、後項與比值:    .
全等三角形 AAS 全等與作圖 SSS 作圖與全等 RHS 全等 SAS 作圖與全等 全等三角形的應用 ASA 作圖與全等 自我評量.
15.5 最大值和最小值 的問題 附加例題 9 附加例題 10 © 文達出版 (香港 )有限公司.
縮放及相似形 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
推理幾何 崙背國中 廖偟郎
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
变 阻 器 常州市北郊初级中学 陆 俊.
箏形及梯形 大綱:箏形 (兩組鄰邊等長) 梯形 (一組對邊平行) 顧震宇 台灣數位學習科技股份有限公司.
中二級數學科 畢氏定理.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
第五章 相交线与平行线 三线八角.
北师大版八年级数学上册 3·1 生活中的平移 澂江四中 李丽波.
做做看。 5 算出塗色部分周長及面積。 1 (2+4)×2=12 2×4=8 12+8=20.
考试大纲相关要求: (1)理解圆及其有关概念 (2)了解弧、弦、圆心角的关系 (3)探索圆的性质
( )下列各圖中何者的L1與L2會平行? C 答 錯 對 (A) (B) (C) (D)
1-2 相似三角形 ● 平行線截比例線段性質:兩條直線 M1、M2 被另一組平行線 L1//L2//L3 所截出來的截線段會成比例。
小 學 四 年 級 數 學 科 正方形和長方形的面積.
不動產估價.
第一章 直 線 ‧1-3 二元一次方程式的圖形.
體積.
AAA相似性質與AA相似性質 SAS相似性質 SSS相似性質
正弦公式和餘弦公式  正弦公式 餘弦公式 c2 = a2 + b2 – 2abcosC 或.
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
7.3 餘弦公式 附加例題 3 附加例題 4.
(a+b)(c+d)=ac+ad+bc+bd
坐標 →配合課本 P49~56 重點 在坐標平面上,以 ( m , n ) 表示 P 點的坐標,記為 P ( m , n ),m 為 P 點的 x 坐標,n 為 P 點的 y 坐標。 16.
例題 1. 多項式的排列 1-2 多項式及其加減法 將多項式 按下列方式排列: (1) 降冪排列:______________________ (2) 升冪排列:______________________ 排列 降冪:次數由高至低 升冪;次數由低至高.
( )下列何者正確? (A) 7< <8 (B) 72< <82 (C) 7< <8 (D) 72< <82 C 答 錯 對.
⁀ ⁀ ⁀ ⁀ ⁀ 配合課本P85 例題1.
坚持,努力,机会留给有准备的人 第一章 四大金融资产总结 主讲老师:陈嫣.
1 試求下列三角形的面積: 在△ABC中,若 , ,且∠B=45° 在△PQR中,若 , ,且∠R=150° (1) △ABC面積 。
數學專題研習 組員﹕F.3C 林華 F.3C 李曉櫻 F.3C 黃曉琳.
在△ABC 與△DEF 中,∠B=∠E=65°,∠A=57°,∠F=58°,請問兩個三角形是否相似?為什麼?
在直角坐標平面上兩點之間 的距離及平面圖形的面積
基于案例研究的教学目标制定.
以下是一元一次方程式的有________________________________。
正方形的性质.
Presentation transcript:

在國一「放大圖與縮小圖」的單元中,我們知道放大圖或縮小圖與原圖之間,有什麼的關係呢? 相似形與比例線段 相似形與SSS相似性質 在國一「放大圖與縮小圖」的單元中,我們知道放大圖或縮小圖與原圖之間,有什麼的關係呢? 對應角相等且對應邊成比例的關係。 A1 D1 C1 B1 A B C D 四邊形A1B1C1D1為四邊形ABCD的2倍放大圖時,可知兩圖形的對應角相等,即 ∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1 且對應邊成比例 AB:A1B1=BC:B1C1=CD:C1D1=DA:D1A1 AB A1B1 BC B1C1 CD C1D1 DA D1A1 或 = = =

動動腦 上述例題中,A1B1:AB的比值是多少? 2 相似形與比例線段 動動腦 上述例題中,A1B1:AB的比值是多少? 2 像上面四邊形的例子,如果兩個多邊形,它們的對應角相等且對應邊成比例,我們說這兩個多邊形相似,並已符號「~」表示相似關係。 因此上述例子可以記成 四邊形ABCD~四邊形A1B1C1D1

已知四邊形ABCD~四邊形PQRS,且∠P是∠A的對應角,∠Q=760,∠R=640,∠S=1000,則∠A是幾度? 相似形與比例線段 例題1 已知四邊形ABCD~四邊形PQRS,且∠P是∠A的對應角,∠Q=760,∠R=640,∠S=1000,則∠A是幾度? Sol ∵相似形的對應角相等, ∴∠A=∠P =3600-∠Q-∠R-∠S (四邊形內角和為3600) =3600-760-640-1000 =1200

已知四邊形ABCD~四邊形PQRS,且PQ是AB的對應邊,PS是AD的對應邊。若PQ=8cm,PS=6cm,AB=5cm,則AD=? 相似形與比例線段 隨 堂 練 習 已知四邊形ABCD~四邊形PQRS,且PQ是AB的對應邊,PS是AD的對應邊。若PQ=8cm,PS=6cm,AB=5cm,則AD=? D C A B Sol ∵四邊形ABCD~四邊形PQRS ∴對應邊成比例 5 AB PQ AD PS ∴ = P S R Q 6 5 8 AD 6 = 8 8×AD=30 30 8 15 4 ∴ AD= = (cm)

例題2 兩個正方形是否一定相似? Sol a 設兩個正方形的邊長分別為 a單位與 b單位 ∵四組對應邊的比均為 a:b ∴它們的對應邊成比例 相似形與比例線段 例題2 兩個正方形是否一定相似? Sol a 設兩個正方形的邊長分別為 a單位與 b單位 ∵四組對應邊的比均為 a:b ∴它們的對應邊成比例 又四組對應角均為900,也相等 b 所以兩個正方形一定相似

兩個長方形是否一定相似?兩個菱形是否一定相似?兩個正三角形是否一定相似? 相似形與比例線段 隨 堂 練 習 兩個長方形是否一定相似?兩個菱形是否一定相似?兩個正三角形是否一定相似? Sol 兩個長方形其對應角均為900相等,但是對應邊不成比例,所以不一定相似。 3 5 2 2 兩個菱角其四組對應邊成比例,但是其對應角不一定相等,所以不一定相似。 2 1 兩個正三角形其對應角均為600,而且三組對應邊成比例,所以一定相似。 2 1

練習心得 當兩個四邊形的對應角都相等時,並不能確定它們的對應邊都成比例。 (如兩個長方形不一定相似) 相似形與比例線段 練習心得 當兩個四邊形的對應角都相等時,並不能確定它們的對應邊都成比例。 (如兩個長方形不一定相似) 當兩個四邊形的對應邊都成比例時,也不能確定它們的對應角都相等。 (如兩個菱形不一定相似) 也就是說,要檢查兩個四邊形是否相似,哪兩個條件是不可省略其一的? 「對應角都相等」與「對應邊都成比例」 事實上,我們要檢查兩個邊數相同的多邊形是否相似時,也必須符合 「對應角都相等」與「對應邊都成比例」

(1)五邊形ABCDE與五邊形PQCDE的對應角是否相等? 相等 相似形與比例線段 隨 堂 練 習 1.小梅設計一個方向指示牌,如右圖的五邊形ABCDE,其中∠A、∠B均為直角,後來覺得太長而裁掉矩形ABQP的部分,剩下五邊形PQCDE,請問: P E A D B Q C (1)五邊形ABCDE與五邊形PQCDE的對應角是否相等? 相等 (2)五邊形ABCDE與五邊形PQCDE的對應邊是否成比例? 不成比例 (3)五邊形ABCDE與五邊形PQCDE是否相似? 不相似 2.兩個正五邊形是否一定相似? ∵「對應角相等」且「對應邊成比例」,∴兩個正五邊形一定相似。

那麼檢查兩個三角形是否相似,是不是也要同時檢查上述兩組條件呢? 相似形與比例線段 那麼檢查兩個三角形是否相似,是不是也要同時檢查上述兩組條件呢? 我們在「放大圖與縮小圖」的單元中曾由實測的方式知道,當兩個三角形的三組邊對應成比例時,這兩個三角形的三組對應角也會相等;也就是說, 當兩個三角形有三組邊對應成比例時,這兩個三角形就相似。 一般把這個性質稱為SSS相似性質。 因此要檢查兩個三角形是否相似,可省略對應角的檢查,只要看看它們三組邊是否對應成比例即可。 P A B C Q R △ABC~△PQR (SSS相似)

隨 堂 練 習 A C B 1.5cm 1.8cm 1.請勾選出與△ABC相似的三角形。 2.1cm (1) □ (2) □ ˇ (3) □ 相似形與比例線段 隨 堂 練 習 A C B 1.5cm 1.8cm 1.請勾選出與△ABC相似的三角形。 2.1cm (1) □ (2) □ ˇ (3) □ ˇ 5 3 cm 7 2cm 2.8cm 2.4cm 2cm 1.5cm 1.6cm 1.7cm 2.已知△ABC的三邊長分別為18mm、36mm、24mm,而△DEF的三邊長分別為3cm、4cm、6cm,則△ABC與△DEF是否相似?為什麼? 30 18 40 24 60 36 ∴相似,根據SSS相似性質 ∵ = =

探索活動 如果兩個三角形的三組對應角相等,是否可推知這兩個三角形的三組邊也會對應成比例呢? 我們將會在下一章節討論這個問題。 相似形與比例線段 如果兩個三角形的三組對應角相等,是否可推知這兩個三角形的三組邊也會對應成比例呢? 我們將會在下一章節討論這個問題。 平行線截比例線段 探索活動 1.已知△ABC與△DEF的三組對應角相等(∠A=∠D,∠B=∠E,∠C=∠F) ,將一組相等的對應角∠A、∠D如下圖疊合後,這組角所對的邊線段BC與線段EF是否平行呢?為什麼? D A A 平行。 ∵在疊合圖中∠ABC與∠DEF兩同位角相等∴BC//EF B C B C E F

2.將∠B、∠E仿照上面的方式疊合後,這組角所對的邊AC與DF是否平行呢? 相似形與比例線段 A A B E B C C F 2.將∠B、∠E仿照上面的方式疊合後,這組角所對的邊AC與DF是否平行呢? 平行 D A A B E B C C F 2.將∠C、∠F仿照上面的方式疊合後,這組角所對的邊AB與DE是否平行呢? 平行

當兩個三角形的三組對應角相等時,可疊合任意一組相等的對應角,形成如下圖中PQ、BC兩邊平行的圖形。 相似形與比例線段 由上面的探索活動可知, 當兩個三角形的三組對應角相等時,可疊合任意一組相等的對應角,形成如下圖中PQ、BC兩邊平行的圖形。 A × P ˇ ● Q ˇ B ● C 因此我們要探討「兩個三角形有三組對應角相等時,三組邊是否也會對應成比例」的問題時, 直接探討如上圖中,PQ//BC的兩個三角形(△ABC與△APQ) ,其對應邊長的比例即可。

隨堂練習 是 否 D A 已知△ABC與△DEF如右圖。 B C (1)若將兩個三角形如右圖疊合,此時BC與EF是否平行? E F D E 相似形與比例線段 隨堂練習 D A 已知△ABC與△DEF如右圖。 600 600 620 B 580 C 580 620 (1)若將兩個三角形如右圖疊合,此時BC與EF是否平行? E F D 是 A B C E F D (2)若將兩個三角形如右圖疊合,此時BC與EF是否平行? A 否 C B 不能單就直觀來判斷兩線段是否平行,要注意對應角的位置。 E F

我們來看兩個等高三角形其對應底邊與面積的關係。 相似形與比例線段 我們來看兩個等高三角形其對應底邊與面積的關係。 例題3 △ABC中,AH⊥BC於H,D在BC上,且BD=3,DC=5,AH=4,則△ABD與△ADC的面積比是多少? Sol A △ABD的面積:△ADC的面積 = ×BD×AH: ×DC×AH 1 2 B H C D = ×3×4: ×5×4 1 2 A A B D H =3:5 H D C BD:DC也是3:5

在例題3中,△ABD與△ADC分別以BD、DC為底時,有相同的高AH,此時兩個三角形的面積比等於BD:DC(底邊比) 。 相似形與比例線段 在例題3中,△ABD與△ADC分別以BD、DC為底時,有相同的高AH,此時兩個三角形的面積比等於BD:DC(底邊比) 。 A B D H C 而這是否表示任意兩個等高的三角形,其面積比會等於底邊的比呢? 數學上,由特殊性推導出一般性 甲 乙 甲的面積:乙的面積 h h = ah: bh 1 2 a b =a:b (底邊比) 由此可見,等高三角形的面積比等於其底邊的比。

隨堂練習 我們利用「等高三角形的面積比等於底邊比」的關係,來討論線段長度比的問題。 A B D H C 相似形與比例線段 隨堂練習 A B D H C 1.如右圖,若△ADC的面積是12平方單位,△ABC的面積是18平方單位,且CH⊥AB於H,則AD:DB與AD:AB的比值各是多少? △CDB面積=△ABC面積-△ADC面積 =18-12=6 (平方單位) A D C B ∴AD:DB=12:6=2:1 ∴比值=2 ∴比值= 2 3 ∴AD:AB=12:18=2:3 2.如右圖,已知AD:DC=4:3,則△ABD與△ABC面積的比值為何? △ABD面積:ABC面積=AD:AC ∴比值= 4 7 =AD: (AD+DC) =4:7

討論問題 A 如右圖,已知PQ//BC,連接PC、BQ後,請問: Q P (1) △PQB的面積與△PQC的面積是否相等?為什麼? B C 相似形與比例線段 討論問題 A 如右圖,已知PQ//BC,連接PC、BQ後,請問: P Q (1) △PQB的面積與△PQC的面積是否相等?為什麼? B C ∵△PQB與△PQC同底等高 ∴面積相等 PC、BQ 稱為「輔助線」 (2)AP:PB和△APQ面積:△PQB面積是否相等?為什麼? ∵等高的三角形面積比等於底邊的比 ∴AP:PB=△APQ面積:△PQB面積 (3)AQ:QC和△APQ面積:△PQC面積是否相等?為什麼? ∵等高的三角形面積比等於底邊的比 ∴AQ:QC=△APQ面積:△PQC面積 (4)由上面三個問題的結果,是否可知AP:PB與AQ:QC相等?為什麼?

(4)由上面三個問題的結果,是否可知AP:PB與AQ:QC相等?為什麼? 相似形與比例線段 (4)由上面三個問題的結果,是否可知AP:PB與AQ:QC相等?為什麼? Q P A C B ∵AP:PB=△APQ面積:△PQB面積 ∵AQ:QC=△APQ面積:△PQC面積 且△PQB面積=△PQC面積 ∴ △APQ面積:△PQB面積= △APQ面積:△PQC面積 ∴AP:PB=AQ:QC #

我們可以把以上所討論的問題與結果,整理為數學推理證明的方式。 相似形與比例線段 我們可以把以上所討論的問題與結果,整理為數學推理證明的方式。 Q P A C B 已知:右圖△ABC中,PQ//BC,且分別交AB、AC兩邊於P、Q兩點。 求證:AP:PB=AQ:QC 證明 ∵PQ//BC ∴△PQB與△PQC以PQ為底時有等高。(平行線間距離相等) ∴△PQB面積=△PQC面積 (同底等高) 又△APQ面積:△PQB面積=AP:PB (同高) △APQ面積:△PQC面積=AQ:QC (同高) ∴△APQ面積:△PQB面積=△APQ面積:△PQC面積 ∴AP:PB=AQ:QC #

「三角形內平行一邊的直線截另兩邊成比例線段」 相似形與比例線段 我們可以進一步將討論及證明中,思考與推理的步驟說明如下: Q P A C B 平行線間距離相等 PQ//BC △PQB與△PQC有等高 同底等高 △PQB與△PQC等面積 等高的三角形面積比等於底邊比 AP:PB=AQ:QC 透過上面的討論,我們發現 「三角形內平行一邊的直線截另兩邊成比例線段」

動動腦 A 在討論問題中,我們已知△PQB與△PQC的面積會相等,請問: Q P (1) △ABQ與△ACP的面積是否相等?為什麼? B C 相似形與比例線段 動動腦 Q P A C B 在討論問題中,我們已知△PQB與△PQC的面積會相等,請問: (1) △ABQ與△ACP的面積是否相等?為什麼? ∵△PQB面積=△PQC面積 ∴ △PQB面積+△APQ面積=△PQC面積+△APQ面積 (等量加法公理) ∴△ABQ面積=△ACP面積 # (2)AP:AB與AQ:AC是否相等?為什麼?

(2)AP:AB與AQ:AC是否相等?為什麼? 相似形與比例線段 (2)AP:AB與AQ:AC是否相等?為什麼? Q P A C B ∵AP:AB=△APQ面積:△ABQ面積 AQ:AC=△APQ面積:△ACP面積 (等高的三角形面積比等於底邊的比) 又 △ABQ面積=△ACP面積 ∴ △APQ面積:△ABQ面積= △APQ面積:△ACP面積 ∴ AP:AB= AQ:AC # 「三角形內平行一邊的直線截另兩邊成比例線段」 (1) AP:PB=AQ:QC (2) AP:AB=AQ:AC

右圖△ABC中,PQ//BC,且AP=12cm,PB=7cm,AQ=18cm,則QC的長是多少? 相似形與比例線段 例題4 右圖△ABC中,PQ//BC,且AP=12cm,PB=7cm,AQ=18cm,則QC的長是多少? A 18 Q Sol 12 C ∵△ABC中,PQ//BC P ∴ AP:PB=AQ:QC 7 B ∴ 12:7=18:QC 12×QC=7×18 (比例式的內項乘積等於外項乘積) 21 2 QC= (cm) #

隨堂練習 右圖△ABC中,PQ//AB,且CP:PA=7:9,若BC=32cm,則QC的長是多少? A : Sol ∵CP:PA=7:9 P 相似形與比例線段 隨堂練習 右圖△ABC中,PQ//AB,且CP:PA=7:9,若BC=32cm,則QC的長是多少? A 9 : Sol ∵CP:PA=7:9 P 7 ∴CP:(CP+PA)=7: (7+9) C ∴CP:CA=7:16 Q B ∵ 在△ABC中,PQ//AB 32 ∴CQ:CB=CP:CA ∴CQ:32=7:16 16×CQ=7×32 ∴CQ=14 #

討論問題 如果將以上的發現反過來說是否也成立呢? 也就是說, 當一直線截三角形的兩邊成比例線段時,此截線是否會平行於三角形的第三邊? 相似形與比例線段 如果將以上的發現反過來說是否也成立呢? 也就是說, 當一直線截三角形的兩邊成比例線段時,此截線是否會平行於三角形的第三邊? 我們將利用以下的討論活動來探討這問題。 討論問題 如圖△ABC中,AP:PB=AQ:QC,且BD和CE分別垂直直線PQ於D、E兩點,請問: A (1) △PQB與△PQC的面積是否相等?為什麼? D P Q E B C 返回

(1) △PQB與△PQC的面積是否相等?為什麼? 相似形與比例線段 (1) △PQB與△PQC的面積是否相等?為什麼? E Q C A B D P 上一張 ∵△APQ面積:△PQB面積 =AP:PB ∵△APQ面積:△PQC面積 =AQ:QC (等高的三角形面積比等於底邊的比) 又 AP:PB=AQ:QC (已知) ∴ △APQ面積:△PQB面積= △APQ面積:△PQC面積 ∴ △PQB面積= △PQC面積 #

E Q C A B D P (2) BD與CE是否相等?為什麼? ∵△PQB面積=△PQC面積 ∴ PQ×BD÷2=PQ×CE÷2 相似形與比例線段 (2) BD與CE是否相等?為什麼? ∵△PQB面積=△PQC面積 ∴ PQ×BD÷2=PQ×CE÷2 ∴ BD=CE # (3) PQ與BC是否平行?為什麼? ∵ BD⊥DE且CE⊥DE ∴BD//CE 又 BD=CE (已證) ∴四邊形BCED為平行四邊形 (一組對邊平行且等長) ∴PQ//BC #

我們可以把以上所討論的問題與結果,整理為數學推理證明的方式。 相似形與比例線段 我們可以把以上所討論的問題與結果,整理為數學推理證明的方式。 已知:右圖△ABC中,AP:PB=AQ:QC, 且BD和CE分別垂直直線PQ於D、E兩點。 E Q C A B D P 求證:PQ//BC 證明: ∵△APQ面積:△PQB面積=AP:PB ∵ BD⊥DE且CE⊥DE △APQ面積:△PQC面積=AQ:QC ∴BD//CE (等高的三角形面積比等於底邊的比) ∴四邊形BCED為平行四邊形 又 AP:PB=AQ:QC (已知) ∴PQ//BC # ∴ △APQ面積:△PQB面積= △APQ面積:△PQC面積 ∴ △PQB面積= △PQC面積 ∴ PQ×BD÷2=PQ×CE÷2 ∴ BD=CE

動動腦 由上面的討論中,我們發現 「當一直線截三角形的兩邊成比例線段時,此直線平行於三角形的第三邊」 A 相似形與比例線段 由上面的討論中,我們發現 「當一直線截三角形的兩邊成比例線段時,此直線平行於三角形的第三邊」 A Q P C B 若AP:PB=AQ:QC,則 PQ//BC。 動動腦 如果只將已知AP:PB=AQ:QC 改為AP:AB=AQ:AC,其餘的條件均不變,則PQ與BC是否平行? 我們可以將此問題以幾何推理證明方式來說明。

已知:右圖△ABC中,AP:AB=AQ:AC, 且BD和CE分別垂直直線PQ於D、E兩點。 A 相似形與比例線段 已知:右圖△ABC中,AP:AB=AQ:AC, 且BD和CE分別垂直直線PQ於D、E兩點。 A Q P C B D 求證:PQ//BC E 證明: 連接BQ、CP ∵△APQ面積:△ABQ面積=AP:AB △APQ面積:△ACP面積=AQ:AC (等高的三角形面積比等於底邊的比) 又∵ AP:AB=AQ:AC ∴ △APQ面積:△ABQ面積= △APQ面積:△ACP面積 ∴ △ABQ面積= △ACP面積 △ABQ面積- △APQ面積= △ACP面積-△APQ面積 ∴ △PQB面積=△PQC面積 ∴ BD=CE 又∵ BD⊥DE且CE⊥DE ∴BD//CE ∴四邊形BCED為平行四邊形 ∴PQ//BC #

相似形與比例線段 例題5 右圖△ABC中,已知AB=12cm,AC=9cm,在AB上取一點P,使AP=8cm;在AC上取一點Q,使AQ=6cm。連接PQ,請問PQ與BC是否平行? Sol 方法一 ∵ AP:PB=8:(12-8) = 8:4 =2:1 12 A Q P C B 8 且 AQ:QC=6:(9-6) = 6:3 =2:1 6 ∴ AP:PB=AQ:QC 9 ∴ PQ//BC # 方法二 ∵AP:AB= 8:12 = 2:3 且AQ:AC= 6:9 = 2:3 ∴ AP:AB=AQ:AC ∴PQ//BC #

隨堂練習 右圖△ABC中,AP:PB=9:11,且AC=40cm,QC=22cm,則PQ與BC是否平行? C Sol AQ=AC-QC Q 相似形與比例線段 隨堂練習 右圖△ABC中,AP:PB=9:11,且AC=40cm,QC=22cm,則PQ與BC是否平行? C Sol AQ=AC-QC Q =40-22 =18 A ∴ AQ:QC=18:22 =9:11 P B ∴ AQ:QC=AP:PB ∴ PQ//BC #

平行線截比例線段性質 由以上的討論與探討的結果可知 在左圖△ABC中, A (1)若PQ//BC,可知 Q P AP:PB=AQ:QC 相似形與比例線段 由以上的討論與探討的結果可知 在左圖△ABC中, A Q P B C (1)若PQ//BC,可知 AP:PB=AQ:QC 或 AP:AB=AQ:AC PQ//BC 反過來說, (2)若AP:PB=AQ:QC A Q P B C A Q P B C 或 AP:AB=AQ:AC 均可知 PQ//BC 這個現象對任意的三角形都成立,一般將此幾何特性稱為 AP:PB=AQ:QC AP:AB=AQ:AC 平行線截比例線段性質

已知一線段AB,請用尺規依下面作法,在AB上找出一點C,使得AC:CB=2:3。 相似形與比例線段 例題6 已知一線段AB,請用尺規依下面作法,在AB上找出一點C,使得AC:CB=2:3。 M 利用平行線截比例線段性質 A B C 作法: P1 (1)過A點任意作一直線L。 P2 (2)在L上依序取P1~P5五點,使得AP1=P1P2=P2P3=P3P4=P4P5 P3 P4 (3)連接P5B P5 L (4)以P2為頂點,AP2為一邊作∠AP2M=∠AP5B,且P2M與P5B在L的同側。 (5)將直線P2M與AB的交點記為C,則C點即為所求。

動動腦 A B L C P1 P5 P4 P3 P2 M 如右圖所做出的圖形中, (1) AP2:P2P5=? 2:3 相似形與比例線段 動動腦 A B L C P1 P5 P4 P3 P2 M 如右圖所做出的圖形中, (1) AP2:P2P5=? 2:3 (2)AC:CB與AP2:P2P5是否相等?為什麼? ∵ 在△ABP5中,P2C//P5B ∴ AC:CB=AP2:P2P5 (平行線截比例線段)

自我評量 1.右圖四邊形ABCD為梯形,且EF分別與AD、BC兩底平行,則下列敘述哪些是正確? A D 相似形與比例線段 自我評量 1.右圖四邊形ABCD為梯形,且EF分別與AD、BC兩底平行,則下列敘述哪些是正確? F D C B A E (A)四邊形AEFD與ABCD的內角會對應相等。 (B)四邊形AEFD~四邊形ABCD (C)四邊形AEFD與EBCF的內角會對應相等 (D)四邊形AEFD~四邊形EBCF (A) 、(C) ∵對應邊都不成比例 ∴四邊形不相似

2.已知△ABC如右圖,請用尺規依下面作法完成剩下的步驟,並回答問題。 C 相似形與比例線段 2.已知△ABC如右圖,請用尺規依下面作法完成剩下的步驟,並回答問題。 C A B 作法: (1)過A點任意作一直線L。 D (2)在L上依序取P1、P2、P3三點,使得AP1=P1P2=P2P3。 M P1 (3)連接P3B。 P2 (4)以P2為頂點,AP2為一邊作∠AP2M=∠AP3B,且P2M與P3B在L的同側。 P3 L (5)將直線P2M與AB的交點記為D。

(2)AD:DB與AP2:P2P3是否相等?為什麼? 相似形與比例線段 如右圖,回答下列問題: C A B L P3 P2 P1 D M (1) AP2:P2P3= 2:1 (2)AD:DB與AP2:P2P3是否相等?為什麼? 相等;根據平行線截比例線段性質 (3)連接CD,請問△ABC面積:△ADC面積的比值為多少? ∵ 兩三角形同高 ∴ 兩三角形面積比等於其底邊的比 △ABC面積:△ADC面積=AB:AD=3:2 3 2 ∴比值=

( )兩個六邊形的內角都對應相等時,這兩個六邊形一定相似。 × 相似形與比例線段 3.下列敘述正確的打「○」錯誤的打「×」。 ( )兩個長方形一定相似。 × ∵對應邊不一定成比例 ( )與長方形相似的四邊形一定是長方形。 ○ ( )兩個六邊形的內角都對應相等時,這兩個六邊形一定相似。 × ∵對應邊不一定成比例 ( )兩個三角形的對應邊都成比例時,這兩個三角形一定相似。 ○ SSS相似性質