定义21.17:设P1=P(Y1)和P2=P(Y2),其个体变元与个体常元分别为X1,C1和 X2,C2,并且或者C1=或者C2。一个半同态映射(,):(P1,X1∪C1)→(P2,X2∪C2)是一对映射: P1→P2; : X1∪C1→X2∪C2,它们联合实现了映射p(x,c)→(p)((x),

Slides:



Advertisements
Similar presentations
第八章 土地行政管理.
Advertisements

「互联网金融2.0时代」与房地产的融合 广州互联网金融协会会长、广州e贷总裁 方颂.
企业会计学(三) 人大版本 吕 昌.
據點考核與評鑑 報告人:臺南市政府 照顧服務管理中心.
特殊族群運動健康訓練(I).
依据教材 全国高等教育自学考试指定教材 《西方行政学说史》, 竺乾威主编,高等教育出版社。
正 信 讀 書 會 主 持 群 : 姚 永 錩 、 鄭 健 、 陳 淑 珍 佛法的生活應用 2008/07/23.
非法集资典型案例评析 南京师范大学法学院 蔡道通 2016年1月.
专题(二) 交往沟通 掌握技能 命 题 解 读 背 景 材 料 新 题 演 练 考 点 链 接 1.
松竹梅岁寒三友 步入建交 桃李杏村暖一家 迈进职教 活出精彩.
第八单元第二课第一课时 严守法律 温州四中 蒋莉青.
高级财务会计.
默写基础知识: 1、家庭是由 关系、 关系或 关系而结合成的亲属生活组织。家里有 ,家中有 。
什么是颈椎病? 颈椎病是指颈椎间盘退行性变,及其继发性椎间关节退行性变所致脊髓、神经、血管损害而表现的相应症状和体征。
四种命题 2 垂直.
常用逻辑用语复习 知识网络 常用逻辑用语 命题及其关系 简单的逻辑联结词 全称量词与存在量词 四种命题 充分条件与必要条件 量词 全称量词 存在量词 含有一个量词的否定 或 且 非或 并集 交集 补集 运算.
1.1.3四种命题的相互关系 高二数学 选修2-1 第一章 常用逻辑用语.
常用逻辑用语复习课 李娟.
1-5重言式与蕴含式 1-5.1重言式(tautology) 定义1-5.1 [重言式]:
第一单元 中国传统文化主流思想的演变.
第2章 谓词逻辑.
公務人員退休法、撫卹法 法制與實務講習 銓敘部退撫司 中華民國99年8月.
《傅雷家书》 学 科:语文 年 级:九年级 授课教师:王宁宁.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第一節 行政裁量與不確定法律概念 第二節 行政裁量
多媒体中心 庄伯金 第二章 谓词逻辑 多媒体中心 庄伯金
本课设置5个环节 一、限时秒杀--5分钟 二、摩拳擦掌--9分钟 三、刀锋相见--20分钟 四、现炒现卖--5分钟 五、相约课后--1分钟.
从中国与联合国的关系演进 看联合国的产生与发展
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
100學年度土木工程系專題研究成果展 題目: 指導老師:3223 專題學生:2132、2313 前言: 成果: 圖1 圖2 方法與流程:
第二章 矩阵(matrix) 第8次课.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第二章 逻辑和证明 2.2 命题等价 命题演算:用真值相同的命题取代另一个 在证明时广泛使用 定义1. 永真式(重言式):真值总是真
第二章 谓词逻辑 在命题逻辑中,主要研究命题与命题之间的逻辑关系,其组成单元是原子命题,而原子命题是以一个具有真假意义的完整的陈述句为单位,不考虑其结构、成分(如主语,谓语等),对原子命题的联接关系的研究,不可能揭示原子命题的内部的特征。因此存在着很大的局限性:不能表达出每个原子公式的内部结构之间的关系,使得很多思维过程不能在命题逻辑中表示出来,例如著名的苏格拉底三段论.
公式的真值表 离散结构 西安工程大学 计算机学院 王爱丽.
通过分解命题可以发现,命题的内部结构包含了下述内容:
§4 谓词演算的性质 谓词逻辑Pred(Y)。 是Y上的关于类型 {F,→,x|xX}的自由代数 赋值 形式证明
第五讲 从常用连续分布到二维变量分布 本次课讲授:第二章的 ; 下次课讲第三章的 ;
§4 命题演算的形式证明 一个数学系统通常由一些描述系统特有性质的陈述句所确定,这些陈述句称为假设,
第 一 篇 数 理 逻 辑.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
——解题思维中的金钥匙 主讲人:马立丽 元认知心理干预技术研究所
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
测验: 2.设是群G上的等价关系,并且对于G的任意三个元素a,x,x‘,若axax’则必有x x‘。证明:与G中单位元等价的元素全体构成G的一个子群。 H={x|xG,并且xe} 对任意的xH, xe, xee=xx-1 对任意的x,yH, xe, ye, eye, x-1xyx-1x.
§2 谓词公式语义解释 个体变元,谓词,函数词和个体常元 需要逐层解决.
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
定义19.13:设p,qP(Y),若{p}╞q且{q}╞p,则称p,q语义等价,记为p │==│ q
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
例:循环群的每个子群一定是循环群。 证明:设H是循环群G的子群,a是G的生成元。 1.aH
§3 命题演算的形式证明 一个数学系统通常由一些描述系统特有性质的陈述句所确定,这些陈述句称为假设,
P A╞* p表示 :不存在一个使得v(A){1}而v(p)=0 的解释域U。
§3 谓词演算的形式证明 一、形式证明 P(Y)上的一阶谓词演算用Pred(Y)表示
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
加減法文字題 國小低年級學生對加減法文字題的瞭解 小組成員 陳育娟 羅珠綾 侯宜孜
第二章 逻辑和证明 2.7小结 数理逻辑的基本思想:逻辑推理机械(演算)化 数理逻辑的基本方法:符号化
飛行器製作與飛行 講師:劉修建.
数理逻辑 数理逻辑的内容可分为五部分: 逻辑演算 证明论 公理集合论 递归论 模型论 介绍命题逻辑和谓词逻辑的逻辑演算.
《离散结构》 二元运算性质的判断 西安工程大学计算机科学学院 王爱丽.
§2 方阵的特征值与特征向量.
Xn到A中的映射,(xi)=ai,a1,a2,…an为A 中的任何元素(允许ai=aj,ij)。
因果性:一个形而上学的预设 赵敦华 2008年5月.
主讲教师 欧阳丹彤 吉林大学计算机科学与技术学院
定义19.17:设P1=P(Y1)和P2=P(Y2),其个体变元与个体常元分别为X1,C1和 X2,C2,并且或者C1=或者C2。一个半同态映射(,):(P1,X1∪C1)→(P2,X2∪C2)是一对映射: P1→P2; : X1∪C1→X2∪C2,它们联合实现了映射p(x,c)→(p)((x),
§4 理想与商环 一、理想 定义14.13:[R;+,*]为环, 若I ,IR,关于+,*运算满足条件:
陪集 例:三次对称群S3={e,1, 2, 3, 4, 5}的所有非平凡子群是:
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
一、格 格的定义,最大元,最小元,有界格,有补格 子格(是格不一定是子格), 给定Hasse图,判断是否分配格,布尔格
Presentation transcript:

在命题演算中,代换定理是基于同态映射:P1→P2,这里P1,P2为二个命题代数,如果P1,P2为谓词代数,则根据同态映射的要求,P1,P2应该有相同的运算集,对其个体符集有新的要求

定义21.17:设P1=P(Y1)和P2=P(Y2),其个体变元与个体常元分别为X1,C1和 X2,C2,并且或者C1=或者C2。一个半同态映射(,):(P1,X1∪C1)→(P2,X2∪C2)是一对映射: P1→P2; : X1∪C1→X2∪C2,它们联合实现了映射p(x,c)→(p)((x), (c)),且具有性质: (1)(X1)X2,(C1)C2,而且在X1上是一对一的。 (2)是{F,→}-同态映射。 (3)对任何pP1有(xp)=(x)(p)。

引理21.3:设(,):(P1,X1∪C1)→ (P2,X2∪C2)是半同态映射,pP1,并且假设xvar(p)。则(x)var((p))。 (1)x不在p中出现 (2)x在p中约束出现 都要利用在X1上是一对一的

定理21.9(代换定理)设(,):(P1,X1∪C1)→(P2,X2∪C2)是半同态映射,AP1,pP1。 如果A┣p,则(A)┣(p)。 证明:对证明序列用归纳法 n=1,p1=pAP1∪A 对n>1,假设对一切证明序列<n结论成立 pi=pj→pn (i,j <n) pn=xq(A0┣q,A0A,xvar(A0))

§5 前束范式 定义21.17(前束范式):pP(Y)为前束范式,当且仅当它具有下面的形式: p=1x12x2…kxkq,其中i(i=1,…,k)是或,且x1,x2,…xk是不同的,q是P(Y)中不带量词的公式。称1x12x2…kxk为前束,称q为母式。 定义21.17:设pP(Y),称与p语法等价的前束范式为p的前束范式。

定理21.11:对任何pP(Y),有前束范式p'满足p┣┫p'。 例:将xR21(x,z)yR22(x,y)变换为前束范式。 定义21.19(斯柯伦范式): pP(Y) 是前束范式 而且它的形式: p=1x12x2…kxkq中的所有全称量词 (如果有的话)总在存在量词(如果有的话)的后面,则称p为斯柯伦(T. Skolem)范式。

§4 谓词演算的性质 谓词逻辑Pred(Y)。 是Y上的关于类型 {F,→,x|xX}的自由代数 赋值 形式证明 赋值解释和证明之间的关系

作业:P425 20,21,23,31

(7) |-(pq) →q 证明:即证|-¬(¬¬p→¬q)→q 由演绎定理即证{¬(¬¬p→¬q)}|-q p1= ¬(¬ ¬ p → ¬q)=(¬ ¬ p →(q→F)) →F (A) p2= ((¬ ¬ p →(q→F)) →F) →((q→F) →((¬ ¬ p →(q→F)) →F)) (A1) p3= (q→F) →((¬ ¬ p →(q→F)) →F) (p1,p2MP) P4=((q→F) →((¬ ¬ p →(q→F)) →F)) →((((q→F) → (¬ ¬ p →(q→F)))→((q→F) →F))) (A2) p5= ((q→F) → (¬ ¬ p →(q→F)))→((q→F) →F) (p3,p4MP) p6= (q→F) → (¬ ¬ p →(q→F)) (A1) p7= (q→F) →F= ¬ ¬ q (p6,p5MP) P8= ¬ ¬q →q (A3) P9=q (p7,p8MP) 可简单,利用 ¬q → (¬ ¬ p → ¬q)

p1=¬q→(¬ ¬ p→¬q) A1. P2=(¬q→(¬ ¬ p→¬q))→(¬(¬ ¬p→¬q)→¬ ¬q) 已证 P3=¬(¬¬p→¬q)→¬ ¬q p1,p2MP P4=¬(¬ ¬ p→¬q) A P5=¬ ¬q p4,p3MP P6= ¬ ¬q →q (A3) P7=q p5,p6MP

P423 1,2,6,7,8