第16章 典型相關分析 本章的學習主題  1. 典型相關的概念 2. 典型相關分析之基本假設及模型適合度 3. 典型權重和典型變量

Slides:



Advertisements
Similar presentations
index 目次 ( 請按一下滑鼠,解答就會出現喔 !) 接續下頁解答 3-1 極限的概念.
Advertisements

夯实教师教育 办好非师范教育 ---- 以外语专业为例 河北师范大学 李正栓. 1. 坚定不移地实施教师教育 A. 关键词:师范院校 师范院校是以培育师资为目的的教育机构,多属于高等教育 层级。 含 “ 师范大学 ” 或 “ 师范学院 ” 。另外,由师专升为本科的院校 多数更名为 “XX 学院 ”
中医内科 陈良金. 目的要求: 熟悉虚劳的证候特征。 了解虚劳的发病与气血阴阳及五脏的关系。 掌握虚劳和肺痨及一般虚证的区别与联系。 掌握虚劳的治疗要点。 熟悉虚劳各个证型的辨证论治。 了解虚劳的预后及调摄护理。
写作中的几点小技巧 金乡县羊山中学 张秀玲. 一、写外貌不用 “ 有 ” 作文如何来写外貌?同学们的作文里总会出现类 似这样的句子: “ XX 可漂亮了,她有一头卷卷的黄头 发,有一双乌黑的葡萄般的大眼睛,有高高的鼻子, 还有一张樱桃小嘴。 ” 如果试着去掉文中的 “ 有 ” ,把文字重新修改一遍,
十大写作技巧. 一、写外貌不用 “ 有 ” 作文如何写外貌?孩子的作文里总会看到类似这样的名 子: “XX 可漂亮了,她有一头卷卷的黄头发,有一双乌黑的 葡萄般的大眼睛,有一个高高的鼻子,还有一张樱桃小嘴。 ” 如果你试着让他们去掉文中的 “ 有 ” ,把文字重新串联一遍, 会发现作文顺了很多。 写上段文字的同学经蒋老师指导后修改如下:
招商谈判技巧 芝麻官营销. 技巧原则 孙子兵法云: “ 兵无常势,水无常形,能 因敌之变化而取胜者,谓之神。 ” “ 内功心法 ” 只有在真正实践中才能体会、 掌握。 谈判有没有具体的套路?有没有 “ 一招制 敌 ” 的擒拿手?
“ 十二五 ” 广东省科技计划项目 经费监管培训 广东省科技厅 一、专项经费管理法规 一、专项经费管理法规 二、经费监督检查 二、经费监督检查 三、项目预算调整管理 三、项目预算调整管理 四、课题经费预算执行管理 四、课题经费预算执行管理 五、项目(课题)财务验收 五、项目(课题)财务验收 2.
教育研究课题的实施 北京教育科学研究院 陶文中 第一节 如何制定课题研究计划 (开题论证报告) 一般结构(框架) 1 、课题名称 2 、研究目的和意义 3 、研究的基本内容 ( 1 )理论研究(细分为若干子项目) ( 2 )实践研究( 细分为若干子项目)
1 語音下單代表號 請輸入分公司代碼 2 位結束請按#字鍵 統一證券您好 ﹗ 請輸入分公司代碼結束請按#字鍵,如不知分公司代碼請按*號。 請輸入您的帳號後 7 位 結束請按#字鍵 請在聽到干擾音時輸入您的密碼結束請按#字鍵 主選單一覽表 委託下單請按 1 ; 取消下單請按 2 成交回報請按.
人權教育融入教學與 法治教育 彭巧綾 蔡永棠 閱讀理解 六頂思考帽 以概念圖整理閱讀理解 指導學生運用關鍵詞,繪製概 念圖,並分享修正。
义务教育课程标准实验教材 四年级下册 语文园地六 词语盘点 习作 口语交际 我的发现 日积月累 展示台.
被 江 泽 民 残 酷 迫 害 致 死 的 法 轮 功 学 员 李竟春,女,1954年3月16日出生,江西省九江市人。于2000年12月18日到北京证实大法,关押在北京市门头沟看守所遭受非人的迫害。在狱中李竟春绝食抗争被管教骗喝一瓶“可疑的豆浆”后一直咳嗽不断,发烧呕吐,吐出白色有强烈异味液体,于2000年1月4日死亡。
目录 如何职位分析调查表 职位分析的目的与意义 职位调查表内容与要点说明 职位分析注意事项 职位分析调查工作计划.
1 修辞手法 2 表现手法 3 表达方式 4 结构技巧 表达技巧.
个人简历 制作 天津民族中专 刘冬.
第八编 清代文学 清代文学绪论 第一章 清代诗词文 第二章 《长生殿》与《桃花扇》 第三章 《聊斋志异》 第四章 《儒林外史》
2015年衢州开化 事业单位备考讲座 浙江研究院 刘洁.
事业单位法人年度报告制度改革 业 务 培 训.
新約研讀 彼得前書複習 讀經組
視力不良學(幼)童 篩檢與矯治常見問題 長庚醫院 兒童眼科 楊孟玲 醫師.
轻松应对百变题型——说明文阅读 五年级 语文 赵老师.
描写家乡的一处景物.
问卷调查法.
小一中文科 家長工作坊
二次函数图象特点的应用 结题报告 K-11 班研究性学习小组 李浚滨制作.
上海体育职业学院 祁社生 一、重视体育科研在提高竞技运动训练水平中的意义和作用
第三章 企业主要经济业务核算 学习目的和要求:通过对工业企业的主要经济业务的了解,要求学生掌握、巩固帐户与借贷记帐法的相关知识及其运用,并进一步了解和熟悉会计核算方法。 本章重点与难点问题是:企业在各阶段的业务核算 内容提要:本章首先介绍企业在各不同阶段(企业创立阶段、企业供应阶段、企业生产阶段、企业销售阶段等)的业务内容;然后介绍了各阶段业务核算所需设置的帐户及其帐户的功能与结构;最后举例说明各阶段业务的核算。
明城 微课程研究运用 姓 名:严静华 单 位:佛山市高明区东洲中学 作品名称:《排比的理解与运用》
校本培训 常州市新北区新桥实验小学 金文英 团体活动助人成长 校本培训 常州市新北区新桥实验小学 金文英
2014年造价员资格考试 建设工程造价管理基础知识 徐建元.
教師權益─ 退撫制度變革修法 吳忠泰 退撫制度變革修法電子檔可在全教總網站下載分享
第16章 典型相關分析 本章的學習主題  1. 典型相關的概念 2. 典型相關分析之基本假設及模型適合度 3. 典型權重和典型變量 4. 典型相關係數 5. 典型負荷量 6. 重疊指數 7. 典型相關分析整體模式之解釋.
【 准 备 上 课 啦 】 心 境 —— 快 乐 源 泉 学习 — 悦于心 聚于魂 化于行.
第七章 无形资产.
《幼儿园模拟教学》(第一章 第二章) 呼伦贝尔学院 教育科学学院 学前教育教研室.
公文及公文处理 学校办公室 姚利民.
广州事业单位面试专项练习 主讲:蔡厚佳 微博:腰果公考菜菜爱做梦 2016年04月29日-05月05日.
(某同学作文选段) 这就是我 大家好,我的名字叫XX,我家在XX,但是小学的时候我在XX学校读书,我现在读书在永固中学,我现在说学校变化,但是我回校读书坐单车,还有学校很大,初中学习练几课,老师有很多,学校学生有很多,但是现在很重要学习,但是我家有很多工叫做,没有那么多时间学习。
高等学校会计制度的学习体会 (第二次征求意见稿).
房地产开发项目经营情况 (X204-1表).
“淡雅浓香 中国风尚” 山东低度浓香白酒整合传播侧记
幼儿园现代管理的思考与实践.
国王赏麦的故事.
童軍志工服務報告 陽光基金會 愛心捐活動 第2組 報告人:秦惠芬 製作人:江妮錡.
德育导师制基本经验介绍.
面试与面试技术.
秀明小學 原來可以這樣學習 應用題 黃耀勤老師 石慧慧老師 李玉珍老師.
函 文种常识 结构写法 注意事项 例文赏析与训练.
学习情境四 旅行社接待业务的管理 【学习目标】 了解旅行社接待业务的性质与特点; 熟悉旅行社门市接待业务与管理;
小一中文科 家長工作坊
邯郸摸底考试网阅分析25题(3) 河北广平县第一中学 于沙.
发生火灾怎么办 后窑镇中心小学 吴琼.
2013年全省法制培训提纲 (工商执法中若干问题的解决思路) 2013年3月12日.
太阳能概述   太阳能是由太阳内部热核反应所释放出的光能、热能及辐射能量。它每年辐射到地球上的能量达1813亿吨标准煤,相当于全世界年需要能量总和的5000倍,是地球上最大的能源。 广东工业大学 材料能源学院.
强化。心系.
年金改革的是與非 吳忠泰.
勞保局人員.
第四章:社交礼仪 一、社交礼仪的原则 二、社交礼仪的特点 三、社交礼仪的常识 四、工作面试中的个人礼仪 五、考研复试中的礼仪.
走向对话的地理课堂教学 海盐高级中学 徐海群.
主讲人 杨延风律师 合同的实务操作与法律风险防范.
关于学生户口迁移的有关说明 保卫处户籍室.
檔案銷毀作業 臺南市政府.
仿写训练 华罗庚实验学校西宁分校 钟卫平.
三、进项转出.
求职信.
102年度「農業旅遊特色商品發展暨行銷活動計畫」研提原則說明
第八讲 辩证法的基本范畴 与辩证思维方法.
传媒学院2013年度团委工作 总结分析报告
107學年度國民中學 學障鑑定個測工作說明 Loading…… 臺東縣特教資源中心.
藝術大師-達利.
Presentation transcript:

第16章 典型相關分析 本章的學習主題  1. 典型相關的概念 2. 典型相關分析之基本假設及模型適合度 3. 典型權重和典型變量 第16章 典型相關分析 本章的學習主題  1. 典型相關的概念 2. 典型相關分析之基本假設及模型適合度 3. 典型權重和典型變量 4. 典型相關係數 5. 典型負荷量 6. 重疊指數 7. 典型相關分析整體模式之解釋 8.典型相關分析SPSS軟體操作實例說明

16.1 典型相關分析之基本概念 典型相關 (canonical correlation) 分析是探討多個準則變數 ( Y1、Y2、...、Yn ) 和多個預測變數 ( X1、X2、...、 Xm ) 線性組合的相關分析方法。典型相關的準則變數和預測 變數通常都是計量的資料。典型相關的一般分析模式如下: Y1 + Y2 +...+ Yn = X1 + X2 +...+ Xm X 組之線性 組合構面 Y 組之線性 RIdu/v RIdv/u R12 X1 X2 Xm X3 …. Y1 Y2 Ym Y3 S11 S12 S13 S1m S21 S22 S23 S2n 圖 16-1 典型相關示意圖

16.1 典型相關分析之基本概念 具體而言,典型相關分析的目的在於: 1. 探討兩組變數(準則變數及預測變數)之間的關 係程度。 2. 針對準則變數和預測變數找出數組權重,使準 則變數和預測變數間之各組線性組合的相關性 為最大。而各組線性組合間是相互獨立的。 3. 分析準則變數各組和預測變數各組線性組合間 之關係,並解釋典型函數中各準則變數對於預 測變數的影響。

16.1 典型相關分析之基本概念 例如我們想探討機會(包括支持、網站效能)與信任(包括資訊基礎信任、認同基礎信任)之典型相關。 16.1 典型相關分析之基本概念 例如我們想探討機會(包括支持、網站效能)與信任(包括資訊基礎信任、認同基礎信任)之典型相關。 首先,在找出第一對X與Y之相關程度最大的線性組合之後,通常還可再找出與第一對線性組合不相關而X與Y之相關程度次大的第二對線性組合。一般而言,在有m1個預測變數和m2個準則變數的情況下,如m1大於m2,則可獲得m2對的線性組合;如m1小於m2,則可獲得m1對的線性組合。 第一對線性組合的典型相關最大,第二對次之,以後則依次愈來愈小。 機會 〔預測變數(X1,X2,X3,…,Xm)〕 .支持 .網站效能 信任 〔準則變數(Y1,Y2,…,Yn)〕 .資訊基礎信任 .認同基礎信任 X組的線性組合 典型相關分析 Y組的線性組合 X組的典型變量 典型相關係數 Y組的典型變量

16.2 典型相關分析的基本假設 及模型適合度 典型相關分析具有以下之基本假設: 1. 兩組變數間的相關係數是基於線性關係,若為非線性則資料必須要被轉換成為線性,才能進行典型相關分析。 2. 典型變量間的典型相關為一線性關係,若為非線性則不會被接受。 3. 典型相關不要求變數服從常態分配,只要該變數能不減少和其他變數相關程度。

16.3 典型相關分析之模型 圖16-1(見下頁)為只產生一組典型變量(因為通常可能不只產生一組典型變量)時描繪成的結構示意圖: 1. S11,S12,…,S1m及S21,S22,…,S2n:此為各變數對各構面之典型負荷量(canonical loadings)。 2. R1:典型相關係數,X方面線性組合與Y方面線性組合之間之相關係數。 3. RIdu/v及RIdv/u:重疊指數,典型相關分析中各組線性組合構面被解釋的變異。

16.3 典型相關分析之模型 RIdu/v RIdv/u …. 圖 16-1 典型相關示意圖 X1 X2 Xm X3 Y1 Y2 Yn Y3 16.3 典型相關分析之模型 X變數之線性 組合構面 Y變數之線性 RIdu/v RIdv/u R12 X1 X2 Xm X3 …. Y1 Y2 Yn Y3 S11 S12 S13 S1m S21 S22 S23 S2n 圖 16-1 典型相關示意圖

依照範例,該模型可表示如下: 圖 16-2 威權領導與敬畏順從之典型規則相關模型

16.4 典型相關係數 典型相關係數(canonical correlation)就是預測變數X 16.4 典型相關係數 典型相關係數(canonical correlation)就是預測變數X 的線性函數組合和準則變數Y的線性函數組合間所能獲 得的最大相關係數。 表 16-1 典型相關整體模式評估

16.4 典型相關係數 通常典型權重在0.3以上即具有顯著的解釋能力,然而由於變數之間可能會因為具有相關,因此利用典型權重來解釋變數的貢獻程度是相當不妥的。若利用下節所說明之典型負荷量來解釋變數之貢獻程度,則沒有這些問題。 表 16-2 第一組典型權重 預測變數之標準化典型相關權重 ALF1 0.167 ALF2 -0.549 ALF3 -0.49 ALF4 -0.068 準則變數之標準化典型相關權重 OBF1 -0.134 OBF2 0.539 OBF3 -0.763 OBF4 0.172

16.5 典型負荷量 典型負荷量(canonical loadings)是指預測和準則兩組變數對各自之典型線性組合間的相關程度。而此種相關稱為典型結構(canonical structure)。通常典型負荷量在0.3以上即代表此一變數對於各自之線性組合具有顯著之解釋能力。 若將每個變數的典型負荷量予以平方,就可獲得每一個原始變數的變異量被其典型變量解釋的程度。各變數的典型負荷量平方值的簡單平均數就是典型變量所解釋之共有變異量之比例,即所謂自我解釋的能力。

16.5 典型負荷量 表 16-3 第一組典型負荷量 * 代表係數大於0.3,表示變數對於各自之線性組合具有顯著的解釋能力 變數名稱 16.5 典型負荷量 表 16-3 第一組典型負荷量 變數名稱 典型相關負荷量 典型相關負荷量平方 自我相關係數 預測變數 70.376% ALF1 -0.702* 0.493 ALF2 -0.925* 0.856 ALF3 -0.920* 0.846 ALF4 -0.778* 0.605 總和 2.8 準則變數 34.871% OBF1 0.347* 0.12 OBF2 0.614* 0.377 OBF3 -0.839* 0.704 OBF4 0.44* 0.1936 1.3946 * 代表係數大於0.3,表示變數對於各自之線性組合具有顯著的解釋能力

16.6 重疊指數 重疊指數(index of redundancy),如同複迴歸中的判定係數( R2 ),是衡量典型相關中被解釋的變異量;它計算預測變數(或準則變數)之變異數可被準則變數(或預測變數)之變異所解釋的程度。重疊指數是由以下兩個數字相乘而得:(1)準則(或預測)變數典型變量之解釋百分比(即自我相關係數);(2)典型相關係數的平方(CANR2)。 表 16-4 第一組重疊指數 重疊係數彙整 變數名稱 自我相關係數 典型相關係數平方 重疊指數 預測變數 70.376% 0.3816 13.307% 準則變數 34.871% 26.885% 一般而言,若重疊指數未達 5%,則此組線性組合之解釋能力不予考慮

16.6 重疊指數   典型相關係數的平方(CANR2)雖是衡量兩個典型變量間共有的變異量,但可能導致一些誤解,因為它代表的是兩組「變數的線性組合」的相關係數,並非兩組「變數」所共有的變異量。   即使線性組合所能解釋的各該組變數變異量之比例不大,有時卻也能獲得較大的典型相關係數。因此計算重疊指數可以將線性組合所能解釋之變異量(即自我相關係數)予以考慮。一般而言,重疊指數未達5%,則此組線性組合之解釋能力即不予考慮。

16.7 典型相關函數 所謂典型相關函數(canonical function)是指兩組典型變量所構成的線性關係。 在解釋典型相關函數時,有三種方法可供使用: 1.典型權重 2.典型負荷量 3.典型交叉負荷量

16.8 典型相關分析的結果呈現 圖16-3 機會與信任之典型相關模型

表 16-5 典型相關係數檢定表 典型相關式 特徵值 典型相關係數平方 Approx F Sig. 1 0.6177 0.3816 13.24 2 0.2204 0.0486 2.62 0.005 3 0.1178 0.0139 1.40 0.233 4 0.0404 0.0016 0.58 0.445

16.9 典型相關分析應注意事項 典型相關分析之限制因素 1.典型相關會反映出變數間線性組合的變異量(variance) 16.9 典型相關分析應注意事項 典型相關分析之限制因素 1.典型相關會反映出變數間線性組合的變異量(variance) 2.典型方程式中所得的典型權重相當不穩定。 3.典型權重是在兩組線性組合達到最大相關下所產生 之權重解,而非在解釋變異量最大之下所產生之權 重解。

16.9 典型相關分析應注意事項 4.解釋典型變量有困難,因為典型相關分析只是在求出典型變量之間的相關性,但是要如何去解釋個別預測變數與個別準則變數之相關目前並沒有很好的解釋方法。 5.由於並沒有一套很精確的統計方法去解釋典型相關分析,因此很難去解釋預測變數和準則變數之間的關係,只能用負荷量(loading)或交叉負荷量(cross-loadings)去解釋它們。