Download presentation
Presentation is loading. Please wait.
1
CHAPTER 2 函 數
2
2-1 函數的意義 在日常生活中討論到量與量的關係,例:手機費用與使用時間的關係,計程車資與行駛距離的關係等,在數學上處理量與量的關係最常見的工具是函數。 什麼是函數(function)呢? 任何兩個量,其中一個量(設為 x)改變,另外一個量(設為 y)也隨之改變,這種描述量與量對應關係的式子就是一個函數。 x 稱為自變數, y 稱為應變量, y 是 x 的函數,記作
3
手機使用時間為自變量 x,手機費用為應變量 y, 手機費用=f(使用時間)
4
從工廠生產的角度來看函數,自變量 x 好比原料,應變量 y 好比成品,函數 f 好比工廠,將原料 x 送入工廠,在工廠 f 中加工,然後輸出成品 y,
8
p.15例1:求下列函數的定義域與值域
12
(1)是函數對應關係,因定義域中的任一個元素,都恰有值域中的一個元素與之對應。
(2)是函數對應關係,因定義域中的任一個元素,都恰有值域中的一個元素與之對應。 (3)是函數對應關係,因定義域中的任一個元素,都恰有值域中的一個元素與之對應。
13
(4)不是函數對應關係,因定義域中的有些元素(如 a),與值域中的多個元素相對應。
(5)不是函數對應關係,因定義域中的有些元素(如 b),未與值域中的元素相對應。同時定義域中的有些元素(如 c),與值域中的多個元素相對應。 (6)不是函數對應關係,因定義域中的有些元素(如 c),未與值域中的元素相對應。
14
2-(1)、(2)之函數稱為一對一函數 定義域中任意相異元素 x1 與 x2,在值域中恆有 之關係, 2-(3)之函數可看出 之關係,此種為多對一函數。
16
判別座標平面上一個曲線是否為某一函數的圖形,檢查所有鉛垂線是否與此曲線均恰有一個交點,如果是,此曲線必為某函數的圖形。
圖(2)是一對一的函數圖形 圖(1)、(3)、(5)是多對一的函數圖形 圖(4)、(6)不是函數圖形
17
p.19 例4: 若函數
19
2-2 函數的圖形 畫出函數圖形最直接的方法就是描點法,根據自變量 x 與應變量 y,對應的數對 (x, y) 一一列表,再按照自變量的大小順序,依序在平面座標上描點,再把所描的點以線條連接起來,就是函數的圖形。 缺點:點不夠多時,圖形易於失真。
20
p.22 例5: 以描點法出函數 的圖形 x y
21
2-3 函數的分類
22
p.24 例6: 分別畫出下列函數的圖形 y L: y=1 O x M: x= -1
23
2-3-2 冪函數
24
p.25 例7: 畫出 的圖形 x y
25
2-3-3 多項式函數
27
當斜率為正,表示該直線由左至右逐漸遞增 當斜率為負,表示該直線由左至右逐漸遞減 當斜率為零,表示該直線為水平直線 當斜率為正或負無限大,表示該直線為垂直直線
29
p.28 例8: 分別畫出 之 圖形,並求其交點
30
p.28 例8: 分別畫出 之 圖形,並求其交點 兩點可決定一直線 L1: x y L2: x y
37
p.32例11: (1)求二次函數 在x=?時,y 有極值? (2)畫出二次函數 之圖形
38
2-3-4 有理函數
39
p.33 例12: 畫出 的圖形 y x 。 O 1
40
2-3-5 分段函數(條件函數) y 3 x O 1 -3 。
41
p.34 例13: 畫出高斯函數 的圖形 [x]表小於或等於 x 的最大整數
y 3 。 ● 2 。 ● 1 。 。 ● ● x 。 ● O 。 ● 。 ●
42
2-3-6 三角函數 古希臘時代為了解幾何上的測量問題,例如度量一條河的寛度或一座山的高度,產生以直角三角形為基礎的三角函數
45
(1)由畢氏定理,斜邊長=兩股平方和再開根號,故斜邊長
46
上述的三角函數定義侷限在角度θ為銳角時才成立,將之推廣至任意角,可得到廣義的三角函數定義。
設 P(x,y) 為有別於原點 O 的任意點,且 ,角度θ之始邊為正 x 軸,終邊為 ,以逆時針方向繞之取正,以順時針方向繞之取負,
57
p.42 例15: 求下列三角函數的值
61
2-3-7 指數函數 指數函數可用以解釋自然界中存在的許多現象,例: 生物學中細胞分裂、社會學中的人口成長以及經濟學中的複利問題。
63
p.45 例16: x y /2 1/4 1/8 x y 1/8 1/4 1/
65
當指數函數 y=ax 之底數 a 等於某常數 e=2.71828……,y=ex (或 y=exp x) 稱為自然指數函數。
66
p 計算下列各式
68
2-3-8 對數函數
70
p.45 例16: x 1/8 1/4 1/ y x 1/8 1/4 1/ y
72
對數函數 y=logax 之底數 a 改成常數 e 時,所得之對數函數 y=logex (y=lnx) 稱為自然對數函數。
74
p 計算下列各式
76
2-3-9 合成函數 考慮兩函數 f (x)=x5 與 g(x)=2x-1,
f (g(x))= f (2x-1)=(2x-1)5,由 x → g(x) → f (g(x)) 的演變過程就叫做合成。 從工廠的角度來看,x 好比原料,首先在第一間工廠 g 加工成半成品,再送入第二間工廠 f 加工為成品。
80
p.50 例18:
81
p.51 例19:
82
反函數
86
(a)圖之函數非一對一函數,故沒有反函數
(b)圖之函數為一對一函數,故有反函數 (c)圖之函數非一對一函數,故沒有反函數
87
p.53 例21:
88
p.54 例22:
89
因兩點 (a,b) 與 (b,a) 對於直線 y=x 對稱,函數 f (x)與其反函數 y=f -1(x) 之圖形亦對於直線 y=x 對稱。
91
多對一函數在定義域的全部範圍沒有反函數,但在局部範圍,多對一函數可能有反函數。
例: f (x)=sinx, 將定義域的範圍限制在 -π/2≦x ≦ π/2,此時 f (x)=sinx 可視為一對一函數
98
多變數函數 前面所述皆為單變數函數(一元函數) y=f (x),只有一個自變數 x,函數圖形由數對(x,y)構成,可在二維空間以線條呈現出來。 事實上在日常生活中接觸到的函數自變數不只一個,稱為多變數函數, 例: z=f (x,y) 有二個自變數 x 與 y,稱之為二變數函數(二元函數),函數圖形由數對 (x,y,z)構成,可在三維空間以曲面呈現出來。
99
例: w=f (x,y,z) 有三個自變數 x, y 與 z,稱之為三變數函數(三元函數),函數圖形由數對(x,y,z,w)構成,可在四維空間以某種形式呈現出來。
Similar presentations