Download presentation
Presentation is loading. Please wait.
Published byAgus Darmadi Modified 6年之前
1
Inferences Based on a Single Sample: Tests of Hypothesis Chapter 9
第九章 單一母體之假設檢定 Inferences Based on a Single Sample: Tests of Hypothesis Chapter 9
2
學習目標 1. 區別各種的假設 假設與檢定的過程 3. P值p-value的觀念與應用 單母體假設與檢定問題的解決 5. 假設的檢定力與應用
1. 區別各種的假設 假設與檢定的過程 3. P值p-value的觀念與應用 單母體假設與檢定問題的解決 5. 假設的檢定力與應用 As a result of this class, you will be able to ...
3
推論統計的應用 5
4
假設檢定的觀念 Hypothesis Testing Concepts
9
5
假設檢定Hypothesis Testing
6
假設檢定Hypothesis Testing
Population
7
假設檢定Hypothesis Testing
Population
8
假設檢定Hypothesis Testing
Population 隨機抽樣 Random sample Mean X = 20
9
假設檢定Hypothesis Testing
拒絕Reject hypothesis! 差了太多 Population 隨機抽樣 Random sample Mean X = 20
10
何謂假設Hypothesis? 1.對於母體母數的信念論述A belief about a population parameter
母體的母數可能為population mean, proportion, variance 必須在事前先確定Must be stated before analysis
11
何謂假設Hypothesis? 1.對於母體母數的信念論述A belief about a population parameter
母體的母數可能為population mean, proportion, variance 必須在事前先確定Must be stated before analysis 我認為本班同學的平均 GPA 為 3.5! ? T/Maker Co.
12
虛無假設Null Hypothesis 1. 對於母體母數的通常性,一般性的論述 2. 若被拒絕則就得到對立假設的顯著性
1. 對於母體母數的通常性,一般性的論述 2. 若被拒絕則就得到對立假設的顯著性 3. 總是包含了等號: , , or 4. 通常簡寫為H0 5. 例如 H0: 某特定值 也可寫為不等式(或) 例H0: 3
13
對立假設 Alternative Hypothesis
1. 對立於虛無假設 2. 總是為不等式(不包含=)即: ,, or 3. 通常寫作Ha (亦被記為H1) 4. 例如Ha: < 某特定值 例, Ha: < 3
14
得到虛無及對立假設的步驟Identifying Hypotheses Steps
1.將問題以統計方式敘述 2.需要充分證據證明的設為對立假設 3.將對立假設以不等式表達 , <, or > 4.確定虛無假設並以數學式表達
15
得到虛無及對立假設的步驟Identifying Hypotheses Steps
1.將問題以統計方式敘述 2.需要充分證據證明的設為對立假設 3.將對立假設以不等式表達 , <, or > 4.確定虛無假設並以數學式表達 範例 某廠商由供應商進了一批零件需求的規格是:平均長度為2吋,為了決定此批零件該被收下或退回,品管部門須抽樣做檢定 Ha: 2 H0: = 2
16
得到虛無及對立假設的步驟Identifying Hypotheses Steps
1.將問題以統計方式敘述 2需要充分證據證明的設為對立假設 3.將對立假設以不等式表達 , <, or > 4.確定虛無假設並以數學式表達 範例 每位大學生平均每年逛書店的次數明顯的低於過去的20次? Ha: < 20 H0: ≧ 20
17
得到虛無及對立假設的步驟Identifying Hypotheses Steps
1.將問題以統計方式敘述 2.需要充分證據證明的設為對立假設 3.將對立假設以不等式表達 , <, or > 4.確定虛無假設並以數學式表達 範例 某研究室設計了一種新的汽化器,預計能增加汽油利用的效率。假設過去平均每加崙的汽油可行使24哩,在大量製造推廣這種新的汽化器之前,我們必須搜尋充分證據證明此種新的設計的確比舊的有效 Ha: 24 H0: ≦ 24
18
檢定依對立假設的形式可分成三類 以母體平均數μ之檢定為例
H0: ≦ 0,Ha: > 0 右尾檢定(right-tailed test) H0: ≧ 0,Ha: < 0 左尾檢定( left-tailed test ) H0: = 0,Ha: ≠ 0 雙尾檢定( two-tailed test ) 0為一事先決定之常數 其中1. 2.又稱為單尾檢定
19
估計時可靠度(relibility)之評估
信賴水準(Confidence Level ) 誤差範圍(Error Bound)
20
決策風險機率 Decision Making Risks
檢定時可靠度之評估 決策風險機率 Decision Making Risks
21
決策錯誤機率 Errors in Making Decision
1. 型I錯誤Type I error 拒絕了正確的虛無假設reject a true null hypothesis 型I錯誤機率以(alpha)表示 也就是檢定的顯著水準Called level of significance 2. 型II錯誤Type II error 接受了錯誤的虛無假設Do not reject false null hypothesis 型II錯誤機率以(beta)表示
22
檢定力(power of the test) 正確的接受了對立假設的機率 =P(reject Ho I Ha is true) =1 - b
23
每位大學生平均每年逛書店的次數明顯的低於過去的20次?
範例 每位大學生平均每年逛書店的次數明顯的低於過去的20次? H0: ≧ Ha: < 20 型I錯誤 真實的情形:大學生平均每年逛書店的次數大於等於20次 檢定的決策:大學生平均每年逛書店的次數少於20次 型 II 錯誤 真實的情形:大學生平均每年逛書店的次數少於20次 檢定的決策:大學生平均每年逛書店的次數大於等於20次
24
決策後之結果 Decision Results
H0: 被告是無辜的Innocent
25
與 有相互間的反效應
26
與 有相互間的反效應
27
與 有相互間的反效應
28
與 有相互間的反效應
29
與 有相互間的反效應 你無法同時減低型I與型II誤差
30
決策後之結果 Decision Results
H0: 被告是無辜的Innocent
31
顯著水準 Level of Significance
2. 一般以(alpha)表達;為既定顯著水準 3. 在進行檢定之前就先確定 常見的值為 .01, .05, .10
32
單母體假設檢定
33
單母體假設檢定 One Population
34
單母體假設檢定 One Population Mean
35
單母體假設檢定 One Population Mean Proportion
36
單母體假設檢定 σknown One Population Mean Proportion Large Sample Z Test
(1 & 2 tail)
37
單母體假設檢定 σunknown σknown One Population Mean Proportion Small Large
Sample Sample Z Test t Test (1 & 2 (1 & 2 tail) tail)
38
單母體假設檢定 σunknown σknown One Population Mean Proportion Small Large
Sample Sample Z Test t Test (1 & 2 (1 & 2 tail) tail)
39
基本知識
40
基本知識 What is Z given = .025? = .025
41
基本知識 當 = .025 時 Z 為? = .025 α
42
基本知識 當 = .025 時 Z 為? 標準常態分配表 (部份) .06 = .025 0.025 1.9 .4750
43
基本知識 當 = .025 時 Z 為? 標準常態分配表 (部份) .06 = .025 = 0.025 1.9 .4750
44
假設檢定問題解決的步驟 Hypothesis Testing Steps
9
45
解決檢定問題的步驟流程 根據問題決定 H0 根據問題決定 H1 根據問題決定 決定樣本數 n 決定合適的檢定統計
46
解決檢定問題的步驟流程 確定拒絕域rejection region及臨界值 critical values 根據問題決定 H0
計算出檢定統計值 根據檢定統計值做出決策 將決策以口語或文字表達 出來 根據問題決定 H0 根據問題決定 H1 根據問題決定 決定樣本數 n 決定合適的檢定統計
47
σ已知時平均數的單尾Ζ檢定 One-Tailed Z Test of Mean (σ known)
9
48
左尾檢定的範例 你是福特公司的汽車性能分析師,你想要了解Escorts型汽車的耗油量是否顯著的低於所訂定的32 mpg(公里每公升)。根據製造部門提供的訊息得知標準差為3.8 mpg。今隨機抽取了 60 輛Escorts汽車得到了樣本平均耗油輛為 30.7 mpg。 試以顯著水準a=0.01 決定耗油量是否低於所訂定的32 mpg? Alone Group Class
49
解決檢定問題的步驟流程 根據問題決定 H0 根據問題決定 H1 根據問題決定 決定樣本數 n 決定合適的檢定統 計 H0:μ≧32
α = 0.01 n = 60
50
步驟五:決定檢定統計量 (Test Statistic)
若有一統計量其數值可判定虛無假設應被接受或拒絕,則此統計量稱為檢定統計量 一般檢定μ時,x 為一恰當的檢定統計量
51
解決檢定問題的步驟流程 確定拒絕域rejection region及臨界值 critical values 根據問題決定 H0
計算出檢定統計值 根據檢定統計值做出決策 將決策以口語或文字表達 出來 根據問題決定 H0 根據問題決定 H1 根據問題決定 決定樣本數 n 決定合適的檢定統計
52
步驟六:確定拒絕域(rejection region)及臨界值(critical value)
拒絕域: X < C C 即為臨界值 臨界值須由檢定統計量的抽樣分配及顯著水準決定
53
當母體的機率分配為常態或是大樣本(n≧30)
基本知識:X 的抽樣分配 當母體的機率分配為常態或是大樣本(n≧30) X 的抽樣分配為(或近似) 常態分配 N(μ,σ/√n)
54
單尾拒絕區 Rejection Region (One-Tail Test)
Rejection region does NOT include critical value.
55
單尾拒絕區 Rejection Region (One-Tail Test)
Sampling Distribution Rejection region does NOT include critical value. Ho Sample Statistic Value
56
單尾拒絕區 Rejection Region (One-Tail Test)
Sampling Distribution Rejection Region Rejection region does NOT include critical value. Ho Sample Statistic Value
57
單尾拒絕區 Rejection Region (One-Tail Test)
Sampling Distribution Rejection Region Rejection region does NOT include critical value. Nonrejection Region 接受區 Ho Sample Statistic Value
58
單尾拒絕區 Rejection Region (One-Tail Test)
Sampling Distribution Rejection Region Rejection region does NOT include critical value. Nonrejection Region 臨界值 Critical Value Ho Sample Statistic Value
59
單尾拒絕區 Rejection Region (One-Tail Test)
Sampling Distribution Rejection Region Rejection region does NOT include critical value. Nonrejection Region Ho Critical Value Sample Statistic Value
60
單尾拒絕區 Rejection Region (One-Tail Test)
Sampling Distribution Level of Confidence Rejection region does NOT include critical value. 1 - 接受虛無假設 若樣本統計落在接受區Observed sample statistic
61
單尾拒絕區 Rejection Region (One-Tail Test)
Sampling Distribution Level of Confidence Rejection region does NOT include critical value. 1 - 不接受虛無假設 若樣本統計落在拒絕區Observed sample statistic
62
臨界值的決定
63
臨界值的決定
64
步驟八:根據檢定統計值作出決策 X = 30.7 < 30.86 落在拒絕域 決策:拒絕虛無假設( H0:μ≧32 )
65
Escorts型汽車的耗油量顯著的低於所訂定的32 mpg(公里 / 公升)。
步驟九:將決策以文字表達 在0.01的顯著水準下, 有充分的證據證明 Escorts型汽車的耗油量顯著的低於所訂定的32 mpg(公里 / 公升)。
66
動腦想一想 μ>32 時之型 ∣錯誤機率為何? 2. 需要將型 ∣錯誤機率降的更低嗎?
67
動腦想一想 μ>32 時之型 ∣錯誤機率為何? Ans: μ>32 時之型 ∣錯誤機率必定較 μ=32 時之型 ∣錯誤機率為小
2. 需要將型 ∣錯誤機率降的更低嗎? Ans: 不用,否則型 ∥錯誤機率會增加
68
Standardized Test Statistic:
標準化檢定統計量 亦可將 X 標準化後以做為檢定統計量 Standardized Test Statistic: Z = (X -μ)/ (σ/ √n)
69
標準化檢定統計量 亦可將 X 標準化後以做為檢定統計量 Test Statistis: Z = (X -μ)/ (σ/ √n)
Z的抽樣分配為標準常態 N(0 ,1)
70
標準化檢定統計量 亦可將 X 標準化後以做為檢定統計量 Test Statistis: Z = (X -μ)/ (σ/ √n)
Z的抽樣分配為標準常態 N(0 ,1) 左尾檢定之拒絕域:Z<- Zα
71
左尾檢定的範例 你是福特公司的汽車性能分析師,你想要了解Escorts型汽車的耗油量是否顯著的低於所訂定的32 mpg(公里每公升)。根據製造部門提供的訊息得知標準差為3.8 mpg。今隨機抽取了 60 輛Escorts汽車得到了樣本平均耗油輛為 30.7 mpg。 試以顯著水準a=0.01 決定耗油量是否低於所訂定的32 mpg? Alone Group Class
72
標準化檢定統計量解答 H0: Ha: = n = Critical Value(s): Test Statistic:
Decision: Conclusion:
73
單尾Z檢定解答 H0: = 32 Ha: < 32 = n = Critical Value(s):
Test Statistic: Decision: Conclusion:
74
單尾Z檢定解答 H0: = 32 Ha: < 32 = .01 n = 60 Critical Value(s):
Test Statistic: Decision: Conclusion:
75
單尾Z檢定解答 H0: ≧ 0.60 Ha: < 0.60 = 0.10 n = 48
Critical Value(s): Test Statistic: Decision: Conclusion: -1.28
76
單尾Z檢定解答 H0: = 32 Ha: < 32 = .01 n = 60 Critical Value(s):
Test Statistic: Decision: Conclusion:
77
單尾Z檢定解答 H0: = 32 Ha: < 32 = .01 n = 60 Critical Value(s):
Test Statistic: Decision: Conclusion: 在 = .01下拒絕虛無假設
78
σ已知時平均數的單尾Ζ檢定解答 H0: = 368 Ha: > 368 = .05 n = 25
Critical Value(s): Test Statistic: Decision: Conclusion: 在 = .05情形下拒絕Ho 有充分證據證明重量超過368公克
79
σ已知時平均數的單尾檢定例題 假設由台北飛金門的班機,必須平均至少有60%的載客率才會有利可圖,今隨機調查48架次由台北飛金門的班機的載客率,顯示平均載客率為58%,若已知載客率的標準差為11%,試在0.10的顯著水準下檢定此資料是否足以證明該此班機無利可圖?
80
σ已知時平均數的單尾Ζ檢定解答 H0: ≧ 0.60 Ha: < 0.60 = n =
Critical Value(s): Test Statistic: Decision: Conclusion:
81
σ已知時平均數的單尾Ζ檢定解答 H0: ≧ 0.60 Ha: < 0.60 = 0.10 n = 48
Critical Value(s): Test Statistic: Decision: Conclusion:
82
單尾Z檢定解答 H0: ≧ 0.60 Ha: < 0.60 = 0.10 n = 48
Critical Value(s): Test Statistic: Decision: Conclusion: -1.28
83
單尾Z檢定解答 H0: ≧ 0.60 Ha: < 0.60 = .10 n = 48 Critical Value(s):
Test Statistic: Decision: 1.26 0.11 48 -1.28
84
單尾Z檢定解答 H0: ≧ 0.60 Ha: < 0.60 = .10 n = 48 Critical Value(s):
Test Statistic: Decision: 在 =0 .10下無法拒絕虛無假設 1.26 0.11 48 -1.28
85
單尾Z檢定解答 Conclusion: 在0.1的顯著水準下,樣本並沒有顯示充分 的證據來證明此班機無利可圖。
86
單尾Z檢定解答 檢定結果無法拒絕虛無假設Ho時: 錯誤結論: 有足夠的證據支持虛無假設 正確結論:沒有足夠的證據來支持對立假
設或沒有足夠的證據來拒絕虛無假設
87
單尾Z檢定解答 檢定結果無法拒絕虛無假設Ho時: 錯誤結論: 有足夠的證據支持虛無假設 正確結論:沒有足夠的證據來支持對立假
設或沒有足夠的證據來拒絕虛無假設 理由: 檢定時並沒有控制型II錯誤機率
88
影響的因素 母體母數的真實值 型I誤差, 的選擇 3. 母體的標準差, 4. 樣本數, n 當兩假設母數差異減少時, b增加
減小時b增加; 增加時b減小 3. 母體的標準差, 增加時b增加 4. 樣本數, n 當n減少時b增加
89
右尾檢定範例 368 gm. 盒裝的麥片重量是否顯著的多過標籤上所載為368 公克呢?
隨機抽選了36 盒的麥片得到了: 樣本平均數為X = 372.5公克。 根據盒上記載裝填所產生的標準差為15公克。請以顯著水準a= 0.05檢定之。 368 gm.
90
σ已知時平均數的右尾Ζ檢定解答 H0: Ha: = n = Critical Value(s): Test Statistic:
Decision: Conclusion:
91
σ已知時平均數的右尾Ζ檢定解答 H0: = 368 Ha: > 368 = n = Critical Value(s):
Test Statistic: Decision: Conclusion:
92
σ已知時平均數的右尾Ζ檢定解答 H0: = 368 Ha: > 368 = .05 n = 36
Critical Value(s): Test Statistic: Decision: Conclusion:
93
σ已知時平均數的右尾Ζ檢定解答 H0: = 368 Ha: > 368 = .05 n = 36
Critical Value(s): Test Statistic: Decision: Conclusion:
94
σ已知時平均數的右尾Ζ檢定解答 H0: = 368 Ha: > 368 = .05 n = 25
Critical Value(s): Test Statistic: Decision: Conclusion:
95
σ已知時平均數的右尾Ζ檢定解答 H0: = 368 Ha: > 368 = .05 n = 25
Critical Value(s): Test Statistic: Decision: Conclusion: 在 = .05情形下拒絕Ho
96
σ已知時平均數的右尾Ζ檢定解答 H0: = 368 Ha: > 368 = .05 n = 25
Critical Value(s): Test Statistic: Decision: Conclusion: 在 = .05情形下拒絕Ho 有充分證據證明重量超過368公克
97
σ已知時平均數的單尾Ζ檢定 H0:≧μ0 Ha: <μ0 H0: ≦μ0 Ha: > μ0
若檢定統計量Ζ值小於- Zα時拒絕H0 若檢定統計量Ζ值大於Zα時拒絕H0
98
檢定 動動腦想一想 在“某一新型汽車美加侖汽油平均行駛的里程數是否顯著的低於25哩 ”的檢定中,若已知該型汽車行駛里程數的標準差為3哩 / 加崙,隨機測試了30輛車並建立決策法則如下:若樣本平均數少於24,則拒絕虛無假設。試問 a.此檢定的顯著水準為何? b.若真實的情形:每加侖汽油平均行駛的里程數只有24.5哩,則此時的型II錯誤機率為何?
99
單尾Z檢定 動動腦想一想 解答 Ho:μ≧25 Ha:μ<25 P(型I錯誤機率) 顯著水準:可容忍的最大型I錯誤機率
= P(拒絕Ho∣Ho正確) = P(X < 24∣μ = 25) = P(Z < -1.83) =
100
單尾Z檢定 動動腦想一想 解答 b. Ho:μ≧25 Ha:μ<25 P(型II錯誤機率) = P(接受Ho∣Ha正確)
= P(X ≧ 24∣μ = 24.5) = P(Z ≧- 0.91) = b.
Similar presentations