Download presentation
Presentation is loading. Please wait.
1
根號 化為 再計算 平方根的意義 的近似值 自我評量
2
搭配頁數 52 此正方形的面積與邊長 圖 2-1 面積=1 邊長= 圖 2-1 面積=4 邊長= 圖 2-1 面積=2 邊長=
3
搭配頁數 52
4
搭配頁數 63
5
否 (2) 因為(1.4)=1.96,(1.5)=2.25,所 以(1.4)< 2 <(1.5),那麼面積為 2
搭配頁數 52 (2) 因為(1.4)=1.96,(1.5)=2.25,所 以(1.4)< 2 <(1.5),那麼面積為 2 的正方形,其邊長是否可用學過的數( 整數、分數或小數)表示? 否
6
2-1 二次方根的意義 正方形面積= a 時, 正方形的邊長= 因為 a 和 分別為面積和邊長, 所以 (邊長)2 = ( )2 = a 抄在筆記本上
7
抄在筆記本上 2-1 二次方根的意義 正方形的邊長= 例如: ( )2 = a 3. (1) 若 a > 0 時 a
8
抄在筆記本上 搭配頁數 57 (2) 若 a<0 時,則 = = -a。 例如:a=-5 時, = = -(-5)=5。
9
抄在筆記本上 2-1 二次方根的意義
10
事實上,面積為 2 的正方形,其邊長 無法用學過的數(整數、分數、小數)表 示,因此,以一個 新的符號 2 ( 讀作根
搭配頁數 53 事實上,面積為 2 的正方形,其邊長 無法用學過的數(整數、分數、小數)表 示,因此,以一個 新的符號 2 ( 讀作根 號二)表示此邊長的實際數值。 從探索活動中可知, 是介於 1.4 和 1.5 之間的數,即 1.4< <1.5。
11
搭配頁數 53 面積為 2 的正方形,它的邊長記為 。 反過來看
12
1.正方形的面積為 6 ,其邊長可記為_____。 2.邊長為 的正方形,其面積為_____。
搭配頁數 53 1.正方形的面積為 6 ,其邊長可記為_____。 2.邊長為 的正方形,其面積為_____。
13
搭配頁數 54 計算下列各數: (1) (2) (1) (2)
14
7 9 56 1.在下列空格中填入適當的數 : (1) (2) (3) (4) 2.若乙數>0,且(乙數)=13,
搭配頁數 54 1.在下列空格中填入適當的數 : (1) (2) (3) (4) 7 9 56 2.若乙數>0,且(乙數)=13, 則乙數可記為______ 。
15
如圖 2-6,比較兩個面積不同的正方形 時,面積較大的正方形,它的邊長比較長。 利用這個概念,可以得知:若 a、b 為
搭配頁數 54 如圖 2-6,比較兩個面積不同的正方形 時,面積較大的正方形,它的邊長比較長。 利用這個概念,可以得知:若 a、b 為 正數,且 a2>b2,則 a>b。
16
若 a= 、b=10、c= ,比較 a、b、c 三數的大小關係。
搭配頁數 55 若 a= 、b=10、c= ,比較 a、b、c 三數的大小關係。
17
< < > > < < 比較下列各小題中,兩數的大小關係: (在空格中填入>或<) 和 因為 _ 所以 _ (2) 和 因為 _ 所以 _
搭配頁數 55 比較下列各小題中,兩數的大小關係: (在空格中填入>或<) < 和 因為 _ 所以 _ (2) 和 < 因為 _ 所以 _ > > < (3) ___ (4) ___4 <
18
當一個正方形的邊長為 2 時,其面積 為 4;而一個面積為 4 的正方形,其邊長也 可以記為 ,所以 =2。 下面利用面積相等的正方形說明
搭配頁數 56 當一個正方形的邊長為 2 時,其面積 為 4;而一個面積為 4 的正方形,其邊長也 可以記為 ,所以 =2。 下面利用面積相等的正方形說明 的化簡。
19
搭配頁數 56 因此, = =2。
20
搭配頁數 56 = = 。
21
搭配頁數 56 由上述可知,若 a 為正數,面積為 a2 的正方 形,其邊長可記為 ; 邊長為 a 的正方形,其面積為a2, 所以 =a。
22
搭配頁數 57 計算下列各數: (1) (2) (1) (2)
23
搭配頁數 57 計算下列各數: (1) (2) =0.4 由於 02=0,因此 = =0。
24
搭配頁數 57 若 a > 0,則 =a。
25
若一個整數 m 是某個整數 a 的平方, 即 m= a2,則 m 稱為完全平方數。 若 整數,則 m 稱為完全平方數
搭配頁數 58 若一個整數 m 是某個整數 a 的平方, 即 m= a2,則 m 稱為完全平方數。 若 整數,則 m 稱為完全平方數 例如:81=92,289=172, 因此 81 及 都是完全平方數。
26
熟悉完全平方數以後,如果根號內是一個完全平方數時,就可以很容易求得它的值,例如: = =13。
搭配頁數 58 將 100 至 400 的完全平方數,列表如下: 熟悉完全平方數以後,如果根號內是一個完全平方數時,就可以很容易求得它的值,例如: = =13。
27
搭配頁數 58 根據上表,計算下列各數: (1) (2) (3) (4)
28
搭配頁數 59 計算下列各數: (1) (2) (3) (1)
29
搭配頁數 59 (2)
30
搭配頁數 59 (3)
31
搭配頁數 59 計算下列各數: (1) 2 576 2 288 2 144 2 72 2 36 2 18 3 9 3
32
搭配頁數 59 (2) 2 1024 5 1225 2 512 5 245 2 256 7 49 2 128 7 2 64 2 32 2 16 2 8 2 4 2
33
搭配頁數 59 (3) 2 676 2 338 13 169 13
34
當 a ≥ 0,若 b2=a,則稱 b 是 a 的平方 根(也稱為二次方根)。 例如: 9 的平方根為
搭配頁數 60 當 a ≥ 0,若 b2=a,則稱 b 是 a 的平方 根(也稱為二次方根)。 例如: 9 的平方根為 因此 3 和 -3 都是 9 的平方根。
35
1.判別 15 是否為 225 的平方根? 是 2.判別-1.3 是否為 1.69 的平方根? 3.判別 是否為 5 的平方根? 是
搭配頁數 60 1.判別 15 是否為 225 的平方根? 2.判別-1.3 是否為 1.69 的平方根? 3.判別 是否為 5 的平方根? 4.判別- 是否為 5 的平方根? 是 是 是 是
36
事實上,對於任意的正數 a, a 的平方根= 所以 、- 都是 a 的平方根, 而且 和- 互為相反數。
搭配頁數 60 事實上,對於任意的正數 a, a 的平方根= 所以 、- 都是 a 的平方根, 而且 和- 互為相反數。 因此,任意的正數都有兩個平方根,而這 兩個平方根互為相反數。
37
搭配頁數 61 正數的平方是正數,負數的平方也是正數,在國中階段,我們找不到任何一個數的平方是負數,所以負數沒有平方根。又 02=0,所以 0 的平方根只有 0。 1.若a>0,則 a 的平方根為 。 2.若a=0,則 a 的平方根為 0。 3.若a<0,則 a 沒有平方根。
38
求下列各數的平方根: (1)19 (2)196 (3) (4) (1) 19 的平方根為 和 - , 合併記為 。 (2)
搭配頁數 61 求下列各數的平方根: (1)19 (2)196 (3) (4) (1) 19 的平方根為 和 - , 合併記為 。 (2) 196 的平方根為 和 - , , 所以 196 的平方根為 。
39
搭配頁數 61 (3) 的平方根為 和 , 所以 的平方根為 。
40
搭配頁數 61 (4) 的平方根為 和 , , 所以 的平方根為 。
41
(1)29 的正平方根為__________ 。 (2)29 的負平方根為__________ 。 2.求下列各數的平方根
搭配頁數 62 1.回答下列問題: (1)29 的正平方根為__________ 。 (2)29 的負平方根為__________ 。 2.求下列各數的平方根 (1)101 (2)2304 101 的平方根為 2304 的平方根為
42
搭配頁數 62 (3) (4)4.84 4.84的平方根為 的平方根為
43
1.若 14 是 a 的正平方根,則 a =? 2.若 -8 是 5x+4 的負平方根,則 x =? 1. 因為 142 = 196,
搭配頁數 62 1.若 14 是 a 的正平方根,則 a =? 2.若 -8 是 5x+4 的負平方根,則 x =? 1. 因為 142 = 196, 所以 14 是 196 的正平方根。 因此 a = 196。 2. 5x+4=(-8)2 5x+4=64 x=12
44
1.回答下列問題: (1)5 是_______的正平方根。 (2)-5 是_______的負平方根。
搭配頁數 62 1.回答下列問題: (1)5 是_______的正平方根。 (2)-5 是_______的負平方根。 2.若 6 和 -6 都是 2x-8 的平方根, 求 x 的值。 2x-8=(±6)2 2x-8=36 2x=44 x=22
45
抄在筆記本上 2-1 二次方根的意義 4.有理數: 一個數可以用 表示, 則該數稱為有理數。 Ex :
46
抄在筆記本上 2-1 二次方根的意義 5.無理數: 一個數不能用 表示, 則該數稱為無理數。 Ex :
47
抄在筆記本上 2-1 二次方根的意義 6.求 近似值的方法 (1) 十分逼近法 (2) 查表法 (3) 計算機法
48
十分逼近法 在本節剛開始的時候(第 53 頁), 學過 是一個介於 1.4 和 1.5 之間的正 數,下面將進一步利用計算的方式
搭配頁數 63 十分逼近法 在本節剛開始的時候(第 53 頁), 學過 是一個介於 1.4 和 1.5 之間的正 數,下面將進一步利用計算的方式 (十分逼近法)推導 的值: 將 1 到 2 之間分成十等分,並求出 這九個等分點 1.1 至 1.9 的平方 :
49
搭配頁數 63 『十分』逼近法
50
搭配頁數 63 (1.1)2=1.21 (1.2)2=1.44 (1.3)2=1.69 (1.4)2=1.96 (1.5)2=2.25 (1.6)2=2.56 (1.7)2=2.89 (1.8)2=3.24 (1.9)2=3.61 小於 2 1.96<2<2.25 (1.4)2<( )2<(1.5)2 所以 1.4< <1.5。 大於 2
51
再將 1.4 到 1.5 之間分成十等分,並求出 這九個等分點 1.41 至 1.49 的平方 : (1.41)2=1.9881
搭配頁數 63 再將 1.4 到 1.5 之間分成十等分,並求出 這九個等分點 1.41 至 1.49 的平方 : (1.41)2=1.9881 (1.42)2=2.0164 (1.43)2=2.0449 (1.44)2=2.0736 (1.45)2=2.1025 小於 2 大於 2 因為(1.41)2<( )2<(1.42)2 所以 < < 1.42
52
仿照上面的方式,將 1.41 到 1.42 之間再分 成十等分,並求出這九個等分點 1.411 至 1.419 的平方,可得
搭配頁數 64 仿照上面的方式,將 1.41 到 1.42 之間再分 成十等分,並求出這九個等分點 至 1.419 的平方,可得 (1.414)2<( )2<(1.415)2 所以 < < 1.415 再以四捨五入法求得 的近似值到小數 點後第二位,即 ≒1.41。
53
數點後第二位(四捨五入),將它整理如下:
搭配頁數 64 再以四捨五入法求得 的近似值到小數 點後第二位,即 ≒1.41。 依此方式進行,可以求出 的近似值到 任意小數位數,這個方法稱為十分逼近法。 上面是以十分逼近法求 的近似值到小 數點後第二位(四捨五入),將它整理如下:
54
抄在筆記本上 十分逼近法求 的近似值 (1)因為 12 =1,22 =4, 1 < 2 <4 所以 1 < <2
搭配頁數 64 十分逼近法求 的近似值 (1)因為 12 =1,22 =4, 1 < 2 <4 所以 1 < <2 (2) 因為(1.4)2 =1.96,(1.5)2 =2.25 1.96 < 2 <2.25 , 所以 1.4 < <1.5 (3)因為(1.41)2 =1.9881,(1.42)2 = 所以 1.41 < <1.42 (4)因為(1.414)2 = ,(1.415)2 = , < 2 < 所以 < < 故 ≒1.41
55
抄在筆記本上 2-1 二次方根的意義
56
求 的近似值,並以四捨五入法求到小數點 後第一位。 (1)因為 12=1,22=4, 1 < 3 <4 所以 1< <2。
搭配頁數 65 求 的近似值,並以四捨五入法求到小數點 後第一位。 (1)因為 12=1,22=4, 1 < 3 <4 所以 1< <2。 (2)因為(1.7)2=2.89,(1.8)2=3.24, < 2 <3.24, 所以 1.7< <1.8。 (3)因為(1.75)2=3.0625>3, 所以 <1.75。 經四捨五入得 ≒1.7。
57
求 的近似值到小數點後第一位時,依下列各小題所提供的數據,按步驟回答下列問題:
搭配頁數 65 求 的近似值到小數點後第一位時,依下列各小題所提供的數據,按步驟回答下列問題: (1) 因為 12=1,22=4,32=9,所以 在哪兩個連續整數之間? 答:__________< <__________
58
2.3 2.2 < 2.2 (2) 因為(2.1)2=4.41,(2.2)2=4.84, (2.3)2=5.29,所以 在哪兩個連
搭配頁數 65 (2) 因為(2.1)2=4.41,(2.2)2=4.84, (2.3)2=5.29,所以 在哪兩個連 續一位小數之間? 答:__________< <__________。 (3) 根據(2.25)2=5.0625,比較 和 2.25 的大小關係。(填>或<) 答: __________2.25。 (4) 以四捨五入法求 的近似值到小數點後 第一位,得 ≒_________。 2.3 2.2 < 2.2
59
查表法 利用十分逼近法求平方根的近似值,過 程非常繁瑣。因此也可以利用課本附錄(第 187 頁 ∼ 第 188 頁)的乘方開方表,迅速地
搭配頁數 66 查表法 利用十分逼近法求平方根的近似值,過 程非常繁瑣。因此也可以利用課本附錄(第 187 頁 ∼ 第 188 頁)的乘方開方表,迅速地 查出完全平方數或是平方根的近似值。 以 272 、 及 的求法為例,說明如 下:
60
搭配頁數 66
61
(1) 查 272: 首先由表 2-1 中標示 N 的這一行找出 27 這 個數,再由該列找出 N 2 那一行對應的數是
搭配頁數 66 (1) 查 272: 首先由表 2-1 中標示 N 的這一行找出 27 這 個數,再由該列找出 N 2 那一行對應的數是 729,就得出 272=729。
62
(2) 查 : 由表 2-1 中標示 N 的這一行找出 5 這個數, 再由該列找出 那一行對應的數是 2.236068,就得出
搭配頁數 66 (2) 查 : 由表 2-1 中標示 N 的這一行找出 5 這個數, 再由該列找出 那一行對應的數是 ,就得出 ≒ 。
63
搭配頁數 66 (3) 查 ≒ : 查法有兩種,
64
搭配頁數 67 以利用右表查出下列各數的值 (或近似值): (1)342 (2) (3) (4)
65
搭配頁數 67 (1) 342 所以 342=1156。
66
搭配頁數 67 (2) 所以 ≒ 。
67
搭配頁數 67 (3) 所以 ≒ 。
68
搭配頁數 67 (4) 所以 。
69
5.385 13.038 由課本附錄的乘方開方表,查出下列各 數的近似值:(以四捨五入法求到小數 點後第三位)
搭配頁數 67 由課本附錄的乘方開方表,查出下列各 數的近似值:(以四捨五入法求到小數 點後第三位) (1) ≒___________ (2) ≒___________ 5.385 13.038
70
,sqrt 代表平方根的英文 square root。 因為各類型電算器的設計不盡相同,所 以實際操作時,同學們可參考電算器的操作 手冊。
搭配頁數 68 電算器求 除了十分逼近法和查表法之外,也可以用 電算器求 的近似值。 開啟電算器後,先按 ,再按下 , 便可得到答案。 某些廠牌的電算器可能沒有 ,而是 ,sqrt 代表平方根的英文 square root。 因為各類型電算器的設計不盡相同,所 以實際操作時,同學們可參考電算器的操作 手冊。
71
搭配頁數 68 1.用電算器求 的值。 2.用電算器求 的近似值。 (以四捨五入法求到小數點後第三位) ≒2.236
72
18 16 1.3 在下列空格中填入適當的數: (1) =__________ (2) =__________
搭配頁數 70 在下列空格中填入適當的數: (1) =__________ (2) =__________ (3) =__________ (4) =__________ 18 16 1.3
73
搭配頁數 70 計算下列各數: (1) (2) (3) (4) (5) (6)
74
已知一個正方形的面積為 19600 平方公分,求其邊長。
搭配頁數 70 已知一個正方形的面積為 平方公分,求其邊長。 邊長為 =140 答:140 公分。
75
求下列各數的平方根: (1)144 (2)6 144 的平方根為±12 6 的平方根為 (3) (4)
搭配頁數 71 求下列各數的平方根: (1) (2)6 (3) (4) (5) (6)2 ×3 × 5 144 的平方根為±12 6 的平方根為 的平方根為 的平方根為 6.76 的平方根為±2.6
76
(1)若 x2=169,則 x=? (±13)=169,所以x=±13 答:x=±13。 (2)若 m2=23,且 m<0,則 m=?
搭配頁數 71 (1)若 x2=169,則 x=? (2)若 m2=23,且 m<0,則 m=? (±13)=169,所以x=±13 答:x=±13。 ,因為 m<0,所以 答:
77
搭配頁數 71 若 ±16 是 3x-5 的平方根,則 x=? 3x-5=(±16) 3x-5=256 3x=261 x=87 答:87。
78
3 4 3.3 3.4 求 的近似值到小數點後第一位時,依下 列各小題所提供的數據,按步驟回答下列問 題:
搭配頁數 72 求 的近似值到小數點後第一位時,依下 列各小題所提供的數據,按步驟回答下列問 題: (1) 因為 12=1,22=4,32=9,42=16, 所以 在哪兩個連續整數之間? 答:_____ < <_____ 。 (2) 因為(3.1)2=9.61,(3.2)2=10.24, (3.3)2=10.89,(3.4)2=11.56, 所以 在哪兩個連續一位小數之間? 3 4 3.3 3.4
79
< 3.3 (3) 根據(3.35)2=11.2225,比較 和 3.35 的大小關係。(填>或<) 答: ______ 3.35。
搭配頁數 72 (3) 根據(3.35)2= ,比較 和 3.35 的大小關係。(填>或<) 答: ______ 3.35。 (4) 以四捨五入法求 的近似值到小數點後第一位,得 ≒_____。 < 3.3
80
4.243 15.166 29 利用右表查出下列各數的值(或近似值): (1) ≒_______。 (2) ≒_______。
搭配頁數 72 利用右表查出下列各數的值(或近似值): 4.243 (1) ≒_______。 15.166 (2) ≒_______。 29 (3) =_______。
81
抄在筆記本上 十分逼近法求 的近似值 (1)因為 22 =4,32 =9, 4 < 7 <9 所以 2 < <3
搭配頁數 64 十分逼近法求 的近似值 (1)因為 22 =4,32 =9, 4 < 7 <9 所以 2 < <3 (2) 因為(2.6)2 =6.76,(2.7)2 =7.29 2.6 < 7 < , 所以 2.6 < <2.7 (3)因為(2.64)2 =6.969,(2.65)2 = 所以 2.64 < <2.65 (4)因為(2.645)2 =6.996, 7<6.996 所以 < 故 ≒2.65
82
抄在筆記本上 2-1 二次方根的意義
Similar presentations