第七章 空间解析几何与向量代数 1、空间直角坐标系; 2、向量及其线性运算; 3、向量的坐标、数量积、向量积;

Slides:



Advertisements
Similar presentations
平面向量.
Advertisements

精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
空间直角坐标系 欧阳顺湘 北京师范大学珠海分校.
第6章 多元函数微积分 6.1空间解析几何简介. 6.2多元函数微分学. 6.3多元函数积分学..
第11章 向量代数与空间解析几何MATLAB求解
高等数学II 课程网页: 答疑时间:(周一10:00-12:00三教三楼答疑室)
第七章 空间解析几何与向量代数 用代数的方法研究几何问题称为解析几何 平面解析几何 一元微积分 空间解析几何 多元微积分 本章的主要内容 :
空间解析几何 湖南大学 数学与计量经济学院.
第七章 向量代数与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的坐标表示 第三节 向量的数量积和向量积 第四节 平面方程
第七章 多元微分学 空间曲面与曲线 多元函数的基本概念 偏微商与全微分 多元复合函数及隐函数求导法则 多元函数的极值和最优化问题.
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第六章 空间解析几何.
第四章 向量组的线性相关性 §1 向量组及其线性组合 §2 向量组的线性相关性 §3 向量组的秩 §4 线性方程组的解的结构.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第七章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第七章 向量代数与空间解析几何 如同平面解析几何那样,空间解析几何是通过建立空间直角坐标,把空间的点与三元有序数组对应起来,用三元方程及方程组来表示空间几何图形,从而可以用代数的方法来研究空间几何问题,而这又是学习微积分的基础。 §1 向量及其线性运算 一.向量的概念 1.数量与向量:仅有数值大小的物理量称数量或标量,如温度、时间等。不仅有大小,还有方向的量称向量或矢量,如力、速度等。
空间解析几何与向量代数 第一节 向量及其线性运算 第二节 数量积 向量积 *混合积 第三节 曲面及其方程 第四节 空间曲线及其方程
第七章 向量与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的点积与叉积 第三节 平面与直线 结束.
第六章 向量代数与空间解析几何 第一节 空间直角坐标 第二节 矢量代数 第三节 空间中的平面和直线 第四节 二次曲面
第一节 空间解析几何的基本知识 1、空间直角坐标系 2、几种特殊的曲面 3、空间曲线.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
第三章 空间解析几何 与向量代数.
第九章 空间解析几何 一、主要内容 二、典型例题.
平面向量复习建议.
3.4 空间直线的方程.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第六章 向量代数与空间解析几何 第一节 向量及其线性运算 一、空间直角坐标系 二、向量与向量的线性运算 三、向量的坐标表示式
第9章 向量与空间解析几何 9.1 空间直角坐标系与向量的概念 9.2 向量的数量积与向量积 9.3 平面方程与空间直线方程
空间直角坐标系 这一章,我们为学习多元函数微积分学作准备,介绍空间解析几何和向量代数。这是两部分相互关联的内容。用代数的方法研究空间图形就是空间解析几何,它是平面解析几何的推广。向量代数则是研究空间解析几何的有力工具。这部分内容在自然科学和工程技术领域中有着十分广泛的应用,同时也是一种很重要的数学工具。
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第七章 空间解析几何 §5 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两空间直线的夹角
第七章 空间解析几何 §3 向量的乘法 一、两向量的数量积 二、两向量的向量积 三、向量的混合积.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第七章 空间解析几何与向量代数 §7.1 向量及其线性运算 §7.2 数量积 向量积 混合积 §7.3 曲面及其方程
3.2.1 直线的方向向量 与平面的法向量.
如图,平行四边形ABCD,AC、BD相交于点O,过点O的EF与AD、BC交于E、F两点,OE与OF,相等吗?为什么?
双曲线的简单几何性质 杏坛中学 高二数学备课组.
一、平面的点位式方程 1 平面的方位向量 过空间中一点M与两个不共线的向量 ,可以唯一确定一个平面 ,则 向量 称为平面 的方位向量
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
§1.1空间直角坐标系 一.空间直角坐标系 坐标原点; 坐标轴; 坐标平面。
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
北师大版八年级(上) 第五章 位置的确定 5.2 平面直角坐标系(3).
微积分 (I)期末小结 2019/4/25.
胜利油田一中 杨芳.
3.3 垂径定理 第2课时 垂径定理的逆定理.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.5空间向量运算的 坐标表示.
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
直线和圆的位置关系 ·.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
2.2矩阵的代数运算.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
第一模块 向量代数与空间解析几何 第二节 向量及其坐标表示法 一、向量的概念 二、向量的坐标表示法.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
3.2 立体几何中的向量方法 3.2 . 1 直线的方向向量与平面的法向量 1.了解如何用向量把空间的点、直线、平面表示来出.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

第七章 空间解析几何与向量代数 1、空间直角坐标系; 2、向量及其线性运算; 3、向量的坐标、数量积、向量积; 4、平面、曲面、空间曲线、空间直线 及其方程; 5、常见的二次曲面及其图形;

基本要求: 1、了解空间直角坐标系和空间两点间的距离公式及线 段的定比分点公式; 2、理解向量概念,熟悉单位向量、向量的方向余弦及 向量的坐标表示,熟悉向量在空间有向线段上的投 影与向量的分解; 3、掌握向量的线性运算(加法、减法和向量与数的乘 法)、数量积(点乘)和向量积(叉乘); 4、熟悉两向量间夹角及两向量平行、垂直的条件; 5、理解曲面方程概念,了解常用二次曲面的方程及其 图形;

基本要求(续) 6、了解空间曲线方程的概念,熟悉空间曲线的参数方 程及其在坐标面上的投影曲线方程; 7、熟悉平面的点法式、一般式和截距式方程,了解两 平面的夹角及平行、垂直的条件; 8、熟悉空间直线的参数式、一般式和对称式方程,熟 悉两直线的夹角和平行、垂直的条件,熟悉直线与 平面的夹角、交点和平行、垂直的条件;

第一节 空间直角坐标系 一、空间直角坐标系与点的坐标 三个坐标轴的正方向符合右手系. 竖轴 定点 纵轴 横轴 空间直角坐标系

三个坐标平面将整个空间分成八个部分空间 Ⅲ 面 面 Ⅱ Ⅳ Ⅰ 面 Ⅵ Ⅶ Ⅴ Ⅷ 空间直角坐标系共有八个卦限

设M是空间的一点, 过点M做平行于坐标面的三个平面, 该三个平面与坐标轴的三个截距值x,y,z就是点M的坐标. 空间的点 有序数组 特殊点的表示: 坐标轴上的点 坐标面上的点

二、空间两点间的距离 过点M1 , M2 分别作平行于坐标面的平面, 形成一个 六面体.

空间两点间距离公式 特殊地:若两点分别为

解 设P点坐标为 所求点为

解 设P点坐标为 所求点为

三、小结 空间直角坐标系 (轴、面、卦限) (注意它与平面直角坐标系的区别) 空间两点间距离公式

思考题 在空间直角坐标系中,指出下列各点在哪个卦限?

思考题解答 A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ;

第二节 向量及其线性运算 一、向量的概念 | | 向量: 既有大小又有方向的量. 向量表示: 或 向量的模: 向量的大小. 或 单位向量: 第二节 向量及其线性运算 一、向量的概念 向量: 既有大小又有方向的量. 向量表示: 或 向量的模: 向量的大小. 或 | | 单位向量: 模长为1的向量. 或 零向量: 模长为0的向量.

自由向量: 不考虑起点位置的向量. 相等向量: 大小相等且方向相同的向量. 负向量: 大小相等但方向相反的向量. 向径: 空间直角坐标系中任一点 与原点构成的向量.

二、向量的加减法与数乘 [1] 加法: (平行四边形法则) (平行四边形法则有时也称为三角形法则) 特殊地:若 ‖ 分为同向和反向

向量的加法符合下列运算规律: (1)交换律: (2)结合律: (3) [2] 减法

例1 化简 解

例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形. 与 平行且相等, 结论得证.

[2] 向量与数的乘法

按照向量与数的乘积的规定, 上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.

数与向量的乘积符合下列运算规律: (1)结合律: (2)分配律: 两个向量的平行关系

证 必要性

充分性: ‖ 两式相减,得

例3 设u轴上的点P1和P2 , 其坐标为u1 和 u2 . 证

例3 试用向量方法证明:空间四边形相邻各边中点的连线构成平行四边形. 例3 试用向量方法证明:空间四边形相邻各边中点的连线构成平行四边形. E F G H 证: 只要证 结论得证.

思考题 已知平行四边形ABCD的对角线 试用 表示平行四边形四边上对应的向量.