第三章 场效应管放大器 3.1 场效应管 3.2 场效应管放大电路 绝缘栅场效应管 结型场效应管 效应管放大器的静态偏置

Slides:



Advertisements
Similar presentations
第四章 场效应管放大电路 场效应管是一种利用电场效应来控制电流的一种半导体器件,是仅由一种载流子参与导电的半导体器件。从参与导电的载流子来划分,它有电子作为载流子的N沟道器件和空穴作为载流子的P沟道器件。 场效应管: 结型 N沟道 P沟道 MOS型 增强型 耗尽型.
Advertisements

《电子产品装接的规划与实施》课程 电子课件 应用电子技术教研室 苏宏艮
电力电子技术基础 Fundamentals of Power Electronics Technology
第2章 电力电子器件 2.1 电力电子器件概述 2.2 不可控器件——电力二极管 2.3 半控型器件——晶闸管 2.4 典型全控型器件
通用变频器应用技术 四川机电职业技术学院 电子电气工程系 学习情境 1-学习性工作任务1.
第4章 电力电子器件 学习目标 1. 掌握GT0、GTR、电力MOSFET、IGBT四种常见全控型电力电子器件的工作原理、特性、主要参数、驱动电路及使用中应注意的问题。 2. 熟悉常见全控型电力电子器件各自特点以及适用场合。 3. 了解新型电力电子器件的概况。 全控器件:能控制其导通,又能控制其关断的器件称为全控器件,也称为自关断器件。和普通晶闸管相比,在多种应用场合控制灵活、电路简单、能耗小,使电力电子技术的应用范围大为拓宽。
电力电子器件 黄琦 陈峦 能源科学与工程学院.
第十三章 現代科技簡介 13-1 物理與醫療 13-2 超導體 13-3 半導體 13-4 人造光源 13-5 奈米科技.
主要内容: 1.场效应管放大器 2.多级放大器的偶合方式 3.组容耦合多级放大器 4.运算放大器电路基础
7.2 其他放大电路 共集电极放大电 共基极放大电 多级放大电路 场效应管放大电路.
晓网电子 晓网电子工票机方案.
电力电子变流技术 第 二十七 讲 主讲教师:隋振                学时:32.
第1章 常用半导体器件 1.1 半导体基础知识 1.2 半导体二极管 1.3 半导体三极管 1.4 场效应管.
第二章 门电路 本章重点及要求: 1、理解半导体二极管和三极管的开关特性;2、掌握分立元件组成的“与、或、非”门电路;3、理解TTL集成门电路和CMOS集成门电路;4、掌握集成门电路的逻辑功能和正确使用方法。5、理解TTL与非门的电压传输特性、输入输出特性等参数。 § 2—1 概述 一、逻辑门电路 门电路----能完成基本逻辑运算和复合逻辑运算的单元电路。
马克思主义基本原理概论 第三章 人类社会及其发展规律.
第7章 常用半导体器件 学习要点 半导体器件工作原理.
Chapter 6 金氧半場效電晶體及相關元件
第六章 : 場效電晶體 Boylestad and Nashelsky Electronic Devices and Circuit Theory Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey
第2章 电力电子器件 2.1 电力电子器件概述 2.2 不可控器件——电力二极管 2.3 半控型器件——晶闸管 2.4 典型全控型器件
第10章 常用半导体器件 本章主要内容 本章主要介绍半导体二极管、半导体三极管和半导体场效晶体管的基本结构、工作原理和主要特征,为后面将要讨论的放大电路、逻辑电路等内容打下基础 。
第五章 常用半导体器件 第一节 PN结及其单向导电性 第二节 半导体二极管 第三节 特殊二极管 第四节 晶体管 第五节 场效应晶体管
Semiconductor Devices
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
3 半导体三极管及放大电路基础 3.1 半导体三极管(BJT) 3.2 共射极放大电路 3.3 图解分析法 3.4 小信号模型分析法
Chapter 7 單載子場效電晶體(FET)
實驗七 電晶體BJT特性 實驗目的 學習量測並描繪電晶體的集極特性曲線。 學習使用萬用電表測量電晶體的hFE值及判斷電晶體的腳位。
實驗十三 接面場效電晶體特性(JFET) 實驗目的 學習量測並描繪接面場效電晶體(JFET)的汲極特性曲線。
第三章 场效应管放大器 3.1 场效应管 3.2 场效应管放大电路 绝缘栅场效应管 结型场效应管 效应管放大器的静态偏置
第六章 模拟集成单元电路.
课程小论文 ——BJT和FET的区别与联系
第六章 模拟集成单元电路.
第三章 晶体管及其小信号放大(1).
第六章: 場效電晶體 1.
第八章 場效應電晶體 8-1 FET的簡介 8-2 JFET的特性 8-3 MOSFET的特性 8-4 FET偏壓電路
媒质 4.1 半导体物理基础 导体:对电信号有良好的导通性,如绝大多数金属,电解液,以及电离气体。
金屬_半導體接觸理論 場效電晶體FET.
第四章 场效应管放大电路 2017年4月7日.
第8章 場效電晶體之特性實驗 8-1 場效電晶體之識別 8-2 G、D、S接腳之判別 8-3 共源極放大電路特性測試 總目錄.
《电子技术基础》 模拟部分 (第六版) 安顺学院 方凯飞.
第 10 章 基本放大电路 10.1 共发射极放大电路的组成 10.2 共发射极放大电路的分析 10.3 静态工作点的稳定
第二章 基本放大电路 2.1放大电路概述 2.2基本放大电路的工作原理 2.3图解分析法 2.4微变等效电路分析法 2.5静态工作点稳定电路
第二章 基本放大电路 2.1 基本放大电路的组成 放大电路的组成原则 (1) 晶体管必须工作在放大区。发射结正偏,集 电结反偏。
CCD图像传感器 光信息91 王哲也
第二章 MOS器件物理基础.
电工电子技术基础 主编 李中发 制作 李中发 2003年7月.
第七章 場效電晶體的偏壓 1.
第五章 场效应管放大电路 姚恒
6 模拟集成电路 6.1 模拟集成电路中的直流偏置技术 6.2 差分式放大电路 6.3 差分式放大电路的传输特性 6.4 集成电路运算放大器
控制器 刘鹏 Dept. ISEE Zhejiang University Source: 补充讲义
半导体 集成电路 学校:西安理工大学 院系:自动化学院电子工程系 专业:电子、微电 时间:秋季学期.
電路基礎知識 Willess 2009/3/5.
半导体 集成电路 学校:西安理工大学 院系:自动化学院电子工程系 专业:电子、微电 时间:秋季学期.
第六章 模拟集成单元电路.
9-1 FET放大器工作原理 9-2 FET交流等效電路 9-3 共源極放大電路 9-4 共汲極放大電路 9-5 共閘極放大電路
电子技术基础模拟部分 1 绪论 2 运算放大器 3 二极管及其基本电路 4 场效应三极管及其放大电路 5 双极结型三极管及其放大电路
CMOS集成电路设计基础 -MOS器件.
半導體原理及應用 (II) 陳志方 國立成功大學 電機工程學系 1/15/06.
第五章 金属-氧化物-半导体 (MOS)场效应管
第 3 章 放大电路基础 3.1 放大电路的基础知识 3.2 三种基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路
5.4 场效应管的频率响应.
第三章 场效应管放大电路 3.1 结型场效应管 3.2 绝缘栅场效应管 3.3 场效应管的主要参数 3.4 场效应管的特点
第三章 场效应管放大器 结型场效应管(JFET) 绝缘栅型场效应管(MOSFET) JFET的结构和工作原理 JFET的特性曲线
實習一 共源極放大器實驗 實習二 共汲極放大器實驗 實習三 共閘極放大器實驗
第三章 集成逻辑门电路.
第四章 MOSFET及其放大电路.
复合管(达林顿管)构成及其应用 您清楚吗? .
各类场效应管对比、参数、 晶体管和场效应管性能对比。
MOS场效应管工作原理 及特性曲线(1) 西电丝绸之路云课堂 孙肖子.
第四单元小结 主线串讲(1)----器件部分 孙肖子.
第二章 放大电路的基本原理 2.1 放大的概念 2.2 单管共发射极放大电路 2.3 放大电路的主要技术指标 2.4 放大电路的基本分析方法
Presentation transcript:

第三章 场效应管放大器 3.1 场效应管 3.2 场效应管放大电路 绝缘栅场效应管 结型场效应管 效应管放大器的静态偏置 效应管放大器的交流小信号模型 效应管放大电路

3.1 场效应管 FET分类: BJT是一种电流控制元件(iB~ iC),工作时,多数载流子和少数载流子都参与运行,所以被称为双极型器件。 场效应管(Field Effect Transistor简称FET)是一种电压控制器件(uGS~ iD) ,工作时,只有一种载流子参与导电,因此它是单极型器件。 FET因其制造工艺简单,功耗小,温度特性好,输入电阻极高等优点,得到了广泛应用。 N沟道 增强型 P沟道 绝缘栅场效应管 N沟道 耗尽型 FET分类: P沟道 N沟道 结型场效应管 P沟道

一. 绝缘栅场效应管 增强型  N沟道、P沟道 符号: 绝缘栅型场效应管 ( Metal Oxide Semiconductor FET),简称MOSFET。分为: 增强型  N沟道、P沟道 耗尽型  N沟道、P沟道 1.N沟道增强型MOS管 (1)结构 4个电极:漏极D, 源极S,栅极G和 衬底B。 符号:

当uGS>0V时→纵向电场 再增加uGS→纵向电场↑ (2)工作原理 当uGS=0V时,漏源之间相当两个背靠背的 二极管,在d、s之间加上电压也不会形成电流,即管子截止。 当uGS>0V时→纵向电场 →将靠近栅极下方的空穴向下排斥→耗尽层。 再增加uGS→纵向电场↑ →将P区少子电子聚集到 P区表面→形成导电沟道,如果此时加有漏源电压,就可以形成漏极电流id。

定义: 开启电压( UT)——刚刚产生沟道所需的 栅源电压UGS。 N沟道增强型MOS管的基本特性: uGS < UT,管子截止, uGS >UT,管子导通。 uGS 越大,沟道越宽,在相同的漏源电压uDS作用下,漏极电流ID越大。

②转移特性曲线: iD=f(uGS)uDS=const 可根据输出特性曲线作出移特性曲线。 例:作uDS=10V的一条转移特性曲线: UT

gm=iD/uGS uDS=const (单位mS) gm的大小反映了栅源电压对漏极电流的控制作用。

2.N沟道耗尽型MOSFET 在栅极下方的SiO2层中掺入了大量的金属正离子。所以当uGS=0时,这些正离子已经感应出反型层,形成了沟道。 特点: 当uGS=0时,就有沟道,加入uDS,就有iD。 当uGS>0时,沟道增宽,iD进一步增加。 当uGS<0时,沟道变窄,iD减小。 定义: 夹断电压( UP)——沟道刚刚消失所需的栅源电压uGS。

3、P沟道耗尽型MOSFET P沟道MOSFET的工作原理与N沟道 MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已。这如同双极型三极管有NPN型和PNP型一样。

4. MOS管的主要参数 (1)开启电压UT (2)夹断电压UP (3)跨导gm :gm=iD/uGS uDS=const (4)直流输入电阻RGS ——栅源间的等效电阻。由于MOS管栅源间有sio2绝缘层,输入电阻可达109~1015。

1. 结型场效应管的结构(以N沟为例): 二. 结型场效应管 两个PN结夹着一个N型沟道。三个电极: g:栅极 d:漏极 s:源极 N沟道 符号:

(1)栅源电压对沟道的控制作用 2. 结型场效应管的工作原理 在栅源间加负电压uGS ,令uDS =0 ①当uGS=0时,为平衡PN结,导电沟道最宽。 ②当│uGS│↑时,PN结反偏,耗尽层变宽,导电沟道变窄,沟道电阻增大。 ③当│uGS│↑到一定值时 ,沟道会完全合拢。 定义: 夹断电压UP——使导电沟道完全合拢(消失)所需要的栅源电压uGS。

(3)栅源电压uGS和漏源电压uDS共同作用 (2)漏源电压对沟道的控制作用 在漏源间加电压uDS ,令uGS =0 由于uGS =0,所以导电沟道最宽。 ①当uDS=0时, iD=0。 ②uDS↑→iD ↑ →靠近漏极处的耗尽层加宽,沟道变窄,呈楔形分布。 ③当uDS ↑,使uGD=uG S- uDS=UP时,在靠漏极处夹断——预夹断。 ④uDS再↑,预夹断点下移。 预夹断前, uDS↑→iD ↑。 预夹断后, iDS↑→iD 几乎不变。 (3)栅源电压uGS和漏源电压uDS共同作用 iD=f( uGS 、uDS),可用输两组特性曲线来描绘。

3、 结型场效应三极管的特性曲线 (1)输出特性曲线: iD=f( uDS )│uGS=常数 uGS=0V uGS=-1V 设:UT= -3V

四个区: 可变电阻区 恒流区 (a)可变电阻区(预夹断前)。 击穿区 (b)恒流区也称饱和 区(预夹断 后)。 恒流区的特点: △ iD /△ uGS = gm ≈常数 即: △ iD = gm △ uGS (放大原理) 截止区 (c)夹断区(截止区)。 (d)击穿区。

(2)转移特性曲线: iD=f( uGS )│uDS=常数 可根据输出特性曲线作出移特性曲线。 例:作uDS=10V的一条转移特性曲线:

4 .场效应管的主要参数 (3)饱和漏极电流IDSS (4)输入电阻RGS (1) 开启电压UT UT 是MOS增强型管的参数,栅源电压小于开启电压的绝对值, 场效应管不能导通。 (2)夹断电压UP UP 是MOS耗尽型和结型FET的参数,当uGS=UP时,漏极电流为零。 (3)饱和漏极电流IDSS MOS耗尽型和结型FET, 当uGS=0时所对应的漏极电流。 (4)输入电阻RGS 结型场效应管,RGS大于107Ω,MOS场效应管, RGS可达109~1015Ω。 (5) 低频跨导gm gm反映了栅压对漏极电流的控制作用,单位是mS(毫西门子)。 (6) 最大漏极功耗PDM PDM= UDS ID,与双极型三极管的PCM相当。

5 .双极型和场效应型三极管的比较 双极型三极管 单极型场效应管 载流子 多子扩散少子漂移 少子漂移 输入量 电流输入 电压输入 控制 电流控制电流源 电压控制电流源 输入电阻 几十到几千欧 几兆欧以上 噪声 较大 较小 静电影响 不受静电影响 易受静电影响 制造工艺 不宜大规模集成 适宜大规模和超大规模集成

3. 2 场效应管放大电路 一. 直流偏置电路 计算Q点:UGS 、 ID 、UDS 已知UP ,由 UGS = - IDR ID 3. 2 场效应管放大电路 一. 直流偏置电路 保证管子工作在饱和区,输出信号不失真 1.自偏压电路 计算Q点:UGS 、 ID 、UDS 已知UP ,由 UGS = - IDR ID 可解出Q点的UGS 、 ID UGS =- IDR UDS =VDD- ID (Rd + R ) 再求: 注意:该电路产生负的栅源电压,所以只能用于需要负栅源电压的电路。

2.分压式自偏压电路 计算Q点: 已知UP ,由 可解出Q点的UGS 、 ID UDS =VDD- ID (Rd + R ) 再求: 该电路产生的栅源电压可正可负,所以适用于所有的场效应管电路。

二. 场效应管的交流小信号模型 与双极型晶体管一样,场效应管也是一种非线性器件,在交流小信号情况下,也可以由它的线性等效电路—交流小信号模型来代替。 其中:gmugs是压控电流源,它体现了输入电压对输出电流的控制作用。 称为低频跨导。 rds为输出电阻,类似于双极型晶体管的rce。

三. 场效应管放大电路 1.共源放大电路

(1)画出共源放大电路的交流小信号等效电路。 分析: (1)画出共源放大电路的交流小信号等效电路。 (2)求电压放大倍数 则 (3)求输入电阻 (4)求输出电阻

2.共漏放大电路 分析: (1)画交流小信号等效电路。 (2)电压放大倍数 由 得 (3)输入电阻

(4)输出电阻 由图有 所以

本章小结 1.FET分为JFET和MOSFET两种,工作时只有一种载流子参与导电,因此称为单极性型晶体管。FET是一种压控电流型器件,改变其栅源电压就可以改变其漏极电流。 2.FET放大器的偏置电路与BJT放大器不同,主要有自偏压式和分压式两种。 3. FET放大电路也有三种组态:共源、共漏和共栅。 电路的动态分析需首先利用FET的交流模型建立电路的交流等效电路,然后再进行计算,求出电压放大倍数、输入电阻、输出电阻等量。