第五、六章 植物体内有机物的代谢和运输 教学目标 了解植物体内各种有机物的相互联系;

Slides:



Advertisements
Similar presentations
第十章 氨基酸代谢 第一节 蛋白质的酶促降解 第二节 氨基酸的降解 第三节 氨基酸的生物合成 第四节 氨基酸衍生的其它含氮化合物.
Advertisements

第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
肝脏谷丙转氨酶活力测定. 一、实验目的 掌握谷丙转氨酶的测定方法。 二、实验原理 谷丙转氨酶作用于丙氨酸及 α- 酮戊二酸,生成谷氨酸与丙 酮酸。丙酮酸与 2.4- 二硝基苯肼作用,生成二硝基苯腙,此 物在碱性溶液呈红棕色,与经同样处理的标准丙酮酸比色, 求得丙酮酸的生成量以表示酶的活性。
一、氨基酸代谢概况食物蛋白质 氨基酸特殊途径  - 酮酸 糖及其代谢 中间产物 脂肪及其代谢 中间产物 TCA 鸟氨酸 循环 NH 4 + NH 3 CO 2 H2OH2OH2OH2O 体蛋白 尿素 尿酸 激素 卟啉 尼克酰氨 衍生物 肌酸胺 嘧啶 嘌呤 生物固氮 硝酸还原 (次生物质代谢) CO.
第七章 氨基酸代谢. NH 2 -CH 2 -COOH + ½ O 2  H-CO-COOH + NH 2 第一节 Amino acid degradation 1. 氧化脱氨基 氨基酸在酶的作用下脱去氨基生成相应酮酸的过 程,叫氧化脱氨基作用 甘氨酸氧化酶 一. 氨的去路.
植物生理 植物细胞生理基础 同工酶. 学习目标 Click to add title in here Click to add title n here  掌握同工酶的概念。  了解同工酶的意义。
Natural Pharmaceutical Chemistry
氨基酸脱水缩合过程中的相关计算 广东省德庆县香山中学 伍群艳 H O C H COOH R2 N NH2 C C 肽键 R1 H2O.
第七章 萜类和挥发油 terpenoids.
第二十三章 萜类、甾族、生物碱 exit.
三种中国南海红树林内生真菌 次级代谢产物的研究
葡萄糖 合成 肌糖元 第六节 人和动物体内三大营养物质的代谢 一、糖类代谢 1、来源:主要是淀粉,另有少量蔗糖、乳糖等。
人和动物体内三大营养物质的代谢 制作:王殿凯.
Amino Acids and their Derivatives Biosynthesis
3.5.2 过氧化物交联 缩合交联的优点: 缩合交联的缺点: 如何来制备高强度的硅橡胶? 如:管材,垫圈。 基胶流动性好;易于封装,密封。
第30章 蛋白质的降解和氨基酸的分解代谢.
五、作用于神经系统的受体拮抗剂 兴奋性氨基酸(EAA)受体拮抗剂 抑制性氨基酸受体受体拮抗剂 神经肽Y受体拮抗剂
第十五章 细胞代谢调控 物质代谢途径的相互联系 代谢的调节.
第30章 蛋白质的降解 及氨基酸的分解代谢.
11 糖代谢中的其它途径.
第七章 三萜以及苷类 定义 三萜(triterpenoids)是由30个碳原子组成的萜类化合物。(指基本骨架,不包括糖),可认为是由6个异戊二烯缩合而成的。 分类 从结构上分两大类:四环三萜 五环三萜 存在形式:游离形式(苷元) 苷的形式(与糖结合)
Metabolism of Carbohydrates
第七节 维生素与辅因子.
植物和我们.
专题2 第一单元 有机化合物的结构 第2课时 同分异构体.
第十章 氨基酸的代谢.
生命的物质基础.
问 题 探 讨 1.DNA的中文全名是什么? 2.为什么DNA能够进行亲子鉴定? 3.你还能说出DNA鉴定技术在其他方面的应用吗?
第8章 人体的营养 第1节 人类的食物.
第十章 蛋白质的酶促降解及氨基酸代谢 第一节 蛋白质的酶促降解 第二节 氨基酸的分解 第三节 氨基酸分解产物的转化
30 蛋白质降解和 氨基酸的分解代谢.
第十五章 糖类化合物习题解答 1. (1) (2) (3) (4) (6) (5) CH2OH HOCH2 CH2OH HO H H HO
第九章 生物碱.
1、环境中直接影响生物生活的各种因素叫做 。它可以分为 和 两类 。
第二章 天然产物的分类和生物合成途径.
天然药物化学 NATURAL PRODUCTS CHEMISTRY
第六章 萜类和挥发油.
Metabolic Interrelationships
物质代谢的相互联系.
生物化学习题.
第九章 物质代谢的联系与调节 Interrelationships & Regulations of Metabolism.
国家级精品课 药物化学 沈阳药科大学药物化学教研室.
第四章 糖代谢 新陈代谢概述 糖酵解 三羧酸循环 戊糖磷酸途径 糖醛酸途径 糖异生.
第四章 糖代谢 一、代谢总论 Metabolism 二、多糖和寡聚糖的酶促降解 三、糖的无氧降解及厌氧发酵 四、葡萄糖的有氧分解代谢
第十章 取代羧酸                 双官能团羧酸 复合功能基羧酸.
李载权老师教学平台页面 登陆说明: 应用药学学生账号为学号后七位,密码为 药学学生账号为学号,密码也为学号;
第二节 生物合成 一次代谢及二次代谢 植物体(绿色植物)以二氧化碳及水为原料,通过光合作用三羧酸循环、固氮反应等一系列 物质代谢与生物合成途径,生成糖、蛋白质、脂质、核酸等植物体生命活动必需物质的过程称为一次代谢过程。
Synthetic Chemical Experiment
ATP SLYTYZJAM.
光合作用的概念和意义 光合作用的场所 光合作用的过程 光合作用的研究历史.
Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis Gut, 2017, Jan (IF=14.921) 汇报人:王宁 IMI CONFIDENTIAL.
第三单元 从微观结构看物质的多样性 同分异构现象.
基于高中生物学理性思维培养的实践性课例开发
第二节 DNA分子的结构.
第二节 羟基酸 羟基酸是分子中既含有羟基又 含有羧基的双官能团化合物。 一、羟基酸的分类和命名 根据羟基酸中羟基所连接的烃基
超越自然还是带来毁灭 “人造生命”令全世界不安
Carbohydrate Metabolism
第十二章 微生物的合成代谢 第一节 微生物对一碳化合物的同化 一、自养微生物CO2的固定 1、Calvin循环 2、羧酸还原反应
遗传物质--核酸 核酸分子组成 核酸分子结构.
四、胞液中NADH的氧化 1. -磷酸甘油穿梭作用: 存在脑和骨骼中.
有关“ATP结构” 的会考复习.
Synthetic Chemical Experiment
光合作用的过程 主讲:尹冬静.
陕西省陕建二中 单 糖 授课人:庄 懿.
蛋白质化学 复 习 新 课.
§2.4 典型化合物的红外光谱 1. 烷烃 C-H 伸缩振动(3000 – 2850 cm1 )
基因信息的传递.
第三节 转录后修饰.
细胞分裂 有丝分裂.
讨论:利用已经灭绝的生物DNA分子,真的能够使灭绝的生物复活吗?
Presentation transcript:

第五、六章 植物体内有机物的代谢和运输 教学目标 了解植物体内各种有机物的相互联系; 掌握植物体内有机物运输的主要特点及影响因素(重点与难点); 了解同化产物的走向与分配规律。

第一节 植物的初生代谢和次生代谢 有机物代谢的主干:糖代谢 糖 戊糖磷酸途径 糖酵解 三羧酸循环 中间产物 蛋白质 脂肪 其他 卡尔文循环

1 有机物代谢的主干 卡尔文循环、糖酵解、三羧酸循环和戊糖磷酸途径是有机物代谢的主干,它筑起了生命活动的舞台,是各种有机物代谢的基础,这个主干来源于光合作用,形成蔗糖和淀粉;通过呼吸作用,分解糖类,产生各种中间产物,进一步为脂类、核酸和蛋白质的合成提供底物。

2 糖、蛋白质和脂肪之间可互变 糖和脂类是相互转变的,因为甘油可逆转为己糖,而脂肪酸分解为乙酰辅酶A后可再转变为糖。氨基酸的碳架——α-酮酸主要来源于糖代谢的中间产物,糖与蛋白质之间可以互相转变,丙酮酸、乙酰辅酶A、α-酮戊二酸和草酰乙酸等中间产物在它们之间的转变过程中起着枢纽作用。 核苷酸的核糖来源于戊糖磷酸代谢,碱基则是由氨基酸及其代谢产物组成的。

3 代谢产物的分类 糖类、脂类、核酸和蛋白质等是初生代谢产物(primary metabolites),植物体中还有许多其他有机物,如萜类、酚类和生物碱等,它们是由糖类等有机物次生代谢衍生出来的物质以,因此成为次生代谢产物(sevondarymetabolites)。次生代谢产物贮存在夜泡或细胞壁中,是代谢的最终产物,除了极少数之外,大部分不再参加代谢活动。次生代谢产物贮存在夜泡或细胞壁中,是代谢的最终产物,除了极少数之外,大部分不再参加代谢活动。

各种有机物代谢的相互联系

次生代谢产物的作用 某些次生代谢产物是植物生命活动必需的,如吲哚乙酸、赤霉素等植物激素,叶绿素、类胡萝卜素和花色素等色素以及木质素等属于次生代谢产物。它们的存在使植物体具有一定的色、香、味,吸引昆虫或动物来传粉和传播种子;某些植物产生对植物本身无毒而对动物或微生物有毒的次生代谢产物,防御天敌吞食,保存自己;因此次生代谢产物的产生是植物在长期进化中对生态环境适应的结果。某些次生产物往往是重要的药物(如奎宁碱)或工业原料(如橡胶),深受人们的重视。

次生代谢产物的分类 植物的次生代谢产物可分3类:萜类、酚类和含氮次生化合物 次生代谢物的合成途径

初生代谢 植物体(绿色植物)以二氧化碳及水为原料,通过光合作用三羧酸循环、固氮反应等一系列 物质代谢与生物合成途径,生成糖、蛋白质、脂质、核酸等植物体生命活动必需物质的过程称为一次代谢过程。此外,一次代谢产物还包括乙酰辅酶A,丙二酸单酰辅酶A,莽草酸及一些氨基酸等。

次生代谢 植物体在特定的条件下,以一些重要的一次代谢产物如乙酰辅酶A 、 丙二酸单酰辅酶A、莽草酸及一些 氨基酸等为原料和前体,经历不同的代谢途径,生成生物碱、萜类等化合物的过程称为次生代谢过程。次生代谢产物很多都具有明显的生理活性,是天然药物化学的主要研究对象。

第二节 萜 类(terpene) 一、萜的含义和分类 萜类化合物(Terpenoids)是一类骨架多样、数量庞大、生物活性广泛的一类重要的天然药物化学成分。从化学结构看,它是异戊二烯的聚合体及其衍生物,其骨架一般以五个碳为基本单位,少数也有例外。 但是,大量的实验研究证明,甲戊二羟酸(Mevalonic acid, MVA)(而不是异戊二烯)是萜类化合物生源途径中最关键的前体物。因此,一般认为,凡由甲戊二羟酸衍生、且分子式符合(C5H8 )n 通式的衍生物均称为萜类化合物。

萜类化合物常常根据分子结构中异戊二烯单位的数目进行分类,如单萜、倍半萜、二萜等,同时再根据各萜类分子结构中碳环的有无和数目的多少,进一步分为链萜、单环萜、双环萜、三环萜、四环萜等,例如链状二萜、单环二萜、双环二萜、三环二萜、四环二萜。

萜类多数是含氧衍生物,所以萜类化合物又可分为醇、醛、酮、羧酸、酯及苷等萜类。 1、单萜和倍半萜: 除虫菊酯、挥发油、闭鞘姜脂、棉酚 2、双萜:冷杉酸、佛波醇、紫杉醇 3、三萜:固醇类 4、四萜:类胡萝卜素、番茄红素 5、多萜:橡胶

萜类化合物的分类及分布 分 类 碳原子数 通式(C5H8)n 存 在 半 萜 5 n=1 植物叶 单 萜 10 n=2 挥发油 倍 半 萜 分 类 碳原子数 通式(C5H8)n 存 在 半 萜 5 n=1 植物叶 单 萜 10 n=2 挥发油 倍 半 萜 15 n=3 二 萜 20 n=4 树脂、苦味质、植物醇 二倍半萜 25 n=5 海绵、植物病菌,昆虫代谢物 三 萜 30 n=6 皂苷、树脂、植物 乳汁 四 萜 40 n=8 植物胡萝卜素 多 聚 萜 ~7.5x103至 ~3x105 (C5H8)n 橡胶、硬橡胶

二、萜类的生物合成 甲羟戊酸途径和甲基赤藓醇磷酸途径,两者都形成异戊烯二磷酸(IPP),然后进一步合成萜类,所以IPP亦称为“活跃异戊二烯。 甲羟戊酸途径是以3 个乙酰COA分子为原料,形成甲羟戊酸(甲戊二羟酸,MVA) ,再经过焦磷酸化、脱酸化合脱水等过程,就形成异戊烯二磷酸(焦磷酸异戊烯酯)(△3-isopentenyl pyrophosphate, IPP) 。 甲基赤藓醇途径也是合成IPP,不过它是由糖酵解或C4途径的中间产物丙酮酸和3-磷酸甘油醛,经过一系列反应,形成甲基赤藓醇磷酸,继而形成二甲炳烯二磷酸(焦磷酸r, r-二甲基烯丙酯)(r, r-dimethyl烯丙基,DMAPP)。

IPP和DMAPP是异构体,是平衡的,两者很活跃,结合起来成为更大的分子。首先是IPP和DMAPP结合为尨牛儿二磷酸(GPP)成为单萜的前身;GPP又会与另一个IPP分子结合,形成法呢二磷酸(FPP),成为倍半萜和三萜的前身;同样,FPP又会与另一个IPP分子结合,形成尨牛儿尨牛儿二磷酸(GGPP),它是二萜和四萜的前身;最后,FPP和GGPP就聚合为多萜。

第二节 酚 类 一、酚类的种类 酚类是芳香族环上的氢原子被羟基或功能衍生物取代后生成的化合物,种类繁多,是重要的次级产物之一,有些只溶于有机溶剂,有些是水溶性羧酸和糖苷,有些是不溶的大分子多聚体。根据芳香环上带有的碳原子数目的不同可分为几种。

酚类化合物广泛分布于植物体,以糖苷或糖脂状态积存于液泡中。在酚类化合物中,有决定花、果颜色的花色素和橙皮素,有构成次生壁重要组成的木质素,也有作为药物的芸香苷(路丁)、肉桂酸和肉桂醇等。

植物的酚类化合物是通过多条途径合成的,其中以莽草酸途径和丙二酸途径为主。 二、酚类的生物合成 植物的酚类化合物是通过多条途径合成的,其中以莽草酸途径和丙二酸途径为主。 在高等植物,大多数通过前一种途径合成酚类;真菌和细菌通过后一种途径合成酚类。

1 莽草酸途径 糖酵解产生的磷酸烯醇式丙酮酸(PEP)和戊糖磷酸途径产生的D-赤藓糖-4-磷酸作用形成中间产物3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸,进一步环化成重要中间产物莽草酸。莽草酸再与PEP作用,形成3-烯醇丙酮酸莽草酸-5-磷酸,脱去Pi,形成分支酸。分支酸是莽草酸途径的重要枢纽物质,它以后的去向分为两个分支:一个分支走向色氨酸,另一个分支是先形成预苯酸,经过arogenic acid,然后再分支:一是形成苯丙氨酸,另一是形成酪氨酸。广谱除草剂草甘磷之所以能除草,就是因为它能抑制催化莽草酸与PEP合成3-烯醇丙酮酸莽草酸-5-磷酸的酶。本途径存在于高等植物、真菌和细菌中,而动物则无,所以动物不能合成苯丙氨酸、酪氨酸和色氨酸这3种芳香族氨基酸,必须从食物中补充。 大多数植物次生产物是苯丙氨酸在苯丙氨酸解氨酶(PAL)作用下,脱氨形成桂皮酸。PAL是初生代谢与次生代谢的分支点,是形成酚类化合物中的一个重要调节酶,它受内外条件影响,例如植物激素、营养水平、光照长短、病菌、机械损害等,可影响PAL的合成及其活性。

莽草酸途径(shikimic acid pathway)

2 丙二酸途径 本途径首先是1分子酰基CoA与3分子丙二酰CoA结合,脱羧,合成1分子多酮酸。多酮酸通过各种方式发生环化作用,形成间苯三酚衍生物,由于它们的R基性质不同,于是形成许多不同的黄酮衍生物。

莽草酸途径(shikimic acid pathway)

三、简单酚类(simple pheolci compound) (1)简单苯丙酸类化合物:具苯环-C3的基本骨架,例如,反-桂皮酸(trans-cinnamic acid),对-香豆酸(para-coumaric acid)、咖啡酸(caffeic acid),阿魏酸(ferulic acid); (2)苯丙酸内酯类化合物:亦称香豆素A(coumarin)类,也具苯环-C3的基本骨架,但C3与苯环通过氧环化,例如伞形酮(umbelliforone),补骨脂内酯(psoralen lactone)、香豆素等; (3)苯甲酸衍生物类:,具苯环-C1的基本骨架,例如水杨酸(salicylic acid)、香兰素(vanillin)等(图5-8)。

四、木质素(lignin)  1.概念:简单酚类的醇衍生物的聚合物 合成过程 (以苯丙氨酸和酪氨酸为起点)

五、类黄酮类(flavonoid) 类黄酮是由苯丙酸、p-香豆酰CoA和3个丙二酰CoA分子在查耳酮合酶催化下缩合而成。

类黄酮类的种类 根据3C桥的氧化程度,类黄酮类可分为4种,即花色素苷(anthocyanin)、黄酮(flavone)、黄酮醇(flavonol)和异黄酮(isoflavone)。基本类黄酮骨架会有许多取代基,羟基常位于4,5,7位,它也常带糖,所以大多数类黄酮是葡糖苷。羟基和糖增加类黄酮的水溶性,而其他替代物(例如甲酯或修改异戊基单位)则使类黄酮呈脂溶性。

类黄酮类的功能 呈现颜色:植物的色素主要有两类:类胡萝卜素和类黄酮。类胡萝卜素是光合作用的辅助色素,呈黄、橙和红色。类黄酮包含各种有色的物质,其中最普遍的有色类黄酮是花色素苷。花、果大部分呈红、淡红、紫和蓝等色,都与花色素苷有关。鲜艳花色可吸引昆虫而帮助传粉,鲜艳果实可吸引动物食用而传播种子。 防御伤害:黄酮类和黄酮醇类不只存在于花器官,也存于绿叶中,由于这两类物质积累在叶和茎的表皮层,吸收紫外线B(UV-B,280~320nm),因此避免了细胞受到强烈UV-B的伤害,这两类物质允许可见光通过,不影响光合作用进行。最近实验证明,类黄酮类是植物的紫外光保护剂。缺乏查耳酮合酶活性的拟南芥突变体,不产生类黄酮,对UV-B较野生型敏感,在正常条件下生长极差。如果将UV-B过滤掉,植物就正常生长。异黄酮类属于类黄酮,具有不同的功能,例如鱼藤根中的鱼藤酮(rotenone)有很强的杀虫作用;植株受细菌或真菌侵染后形成的植物防御素(phytoalexin)能限制病原微生物进一步扩散。

六、鞣质(tannin)  在植物酚类多聚体中具有防御功能的,除了木质素外,就是鞣质(tannin,俗名丹宁),其相对分子质量大多数为600-3 000。鞣质可分两类:缩合鞣质和可水解鞣质。缩合鞣质是由类黄酮单位聚合而成,相对分子质量较大,是木本植物的组成成分,可被强酸水解为花色素。可水解鞣质是不均匀的多聚体,含有酚酸(主要是没食子酸gallic acid)和单糖,相对分子质量较小,易被稀酸水解。 鞣质有毒,草食动物吃后明显抑制生长。鞣质在口腔中与蛋白质结合,有涩味。一些牲畜不愿吃鞣质含量高的植物,因为鞣质与肠中的蛋白质结合会形成不易消化的蛋白质——鞣质复合物。树干心材的鞣质丰富,能防止真菌和细菌引起的心材腐败。

第四节 含氮次生化合物 生物碱 含氰苷 芥子油苷 蛋白氨基酸 第四节 含氮次生化合物 植物次生代谢产物中有许多是含氮的,大多数含氮次生产物是从普通的氨基酸合成的。这里,着重介绍植物含氮次生代谢产物中的生物碱和含氰苷等,它们都具有防御功能。 生物碱 含氰苷 芥子油苷 蛋白氨基酸

一、生物碱 生物碱(alkaloid)是一类含氮杂环化合物,通常有一个含N杂环,其碱性即来自含N的环。目前已发现含有生物碱的植物将近一百多个科,其中豆科、夹竹桃科、罂粟科、毛莨科、防己科、马钱科、茄科、芸香料、茜草科、石蒜科等多含生物碱。一科植物中常含多种结构相似的生物碱,如麻黄中已发现7种有机胺类生物碱。生物碱在植物体内的分布并不一致,如古柯碱(可卡因)集中在叶内,奎尼碱集中在树皮,香木鳖碱集中在种子,石蒜碱集中在鳞茎。 植物器官中的生物碱含量很低,一般在万分之几到百分之一二(象金鸡纳树皮那样含奎尼碱12%是极少的)。植物在不同生长时期所含生物碱的成分及含量常有不同。有些多年生的植物,随年龄增长,某部分的含量逐渐增加,如金鸡纳树皮的奎尼碱随树龄的增长而增加,小檗根中的小檗碱(黄连素)含量也随植物年龄增长而增加。植物生物碱含量亦受外界条件的影响而改变,如氮肥多时,烟碱含量就高。

生物碱的种类 生物碱是植物体氮素代谢的中间产物,是由不同氨基酸衍生来的,尤其赖氨酸、酪氨酸、色氨酸。烟碱(nicotine)是烟草中的主要生物碱。烟碱的生物合成是由天冬氨酸和3--磷酸甘油醛合成烟酸(nicotinic acid),进一步与精氨酸生物合成的中间产物鸟氨酸(ornithine)合成为烟碱(图5-13)。

生物碱的功能 生物碱是核酸的组成成分,又是维生素B1、叶酸和生物素的组成成分,所以具有重要的生理意义;它对动物往往有毒性,所以也有防御敌害的意义。生物碱是重要药物的有效成分,许多中药的有效成分往往是生物碱,比如有平喘作用的麻黄,其有效成分是麻黄碱;有抗菌效果的黄连,其有效成分是小檗碱;有止痛作用的元胡,其有效成分是延胡索乙素等多种生物碱。现在西药常用的重要药品,最初还是从植物分离出来证实有效后化学合成的,例如从萝芙木分离出来的利血平,从金鸡纳树皮分离出来的奎宁等。在抗癌药物中有从长春花中分离出来的长春新碱,从粗榧分离的三尖杉酯碱,从美登木分离的美登木碱等。

二、含氰苷 含氰苷(cyanogenic glycoside)广泛分布于植物界,其中以豆类、禾谷类和玫瑰一些种类最多。 含氰苷本身无毒,但植物破碎后就会释放出有挥发性的毒物氰化氢(HCN)。在完整植物中,含氰苷存在于叶表皮的液泡中,而分解含氰苷的酶——糖苷酶(glycosidase)则存在叶肉中,互不接触。当叶片被咬碎后,含氰苷就与酶混合,含氰苷中的氰醇(cyanohydrin)和糖分开,前者再在羟基腈裂解酶(hydroxynitrile lyase)作用下或自发分解为酮和HCN(图5-14)。昆虫和其他草食动物(如蛇、蛞蝓)取食植物后,产生HCN,呼吸就被抑制。木薯(manihot esculenta)块茎含较多含氰苷,一定要经磨碎、浸泡、干燥等过程,除去或分解大部分含氰苷后,才能食用。

第五节 植物次生代谢的基因工程 一、花卉育种 第五节 植物次生代谢的基因工程 一、花卉育种 植物花的颜色与类黄酮有关,而查耳酮合酶(CHS)是类黄酮生物合成的关键酶,也是花色素合成的关键酶。陈章良等从矮牵中分离出CHS的cDNA,将cNDA与CaMV的35S启动子反向连接,再把此反义基因系统连到双元载体Bin19上,得到矮牵牛转基因植株,其花色从原来的紫红色变为粉红色并夹有杂白色或全白色,这种反义RNA技术为园艺学育种提供了一条新途径。

二、作物形状改良 利用基因工程改变植物的次生代谢,可使植物合成新的植物抗毒素,以增加抗病能力,或抑制某些性状,以提高产品品质。例如,1,2—二苯乙烯合成酶是合成植保素白藜芦醇的关键酶,正常烟草不含这种酶。将花生的二苯乙烯合成酶转入烟草,烟草便合成此植保素,增强对灰葡萄孢菌的抗性。又如,用正义和反义序列的O--甲基转移酶基因转化烟草,就可以控制植物中木质素的合成。这对未来的蔬菜基因工程很有意义。

三、药用植物的细胞工程与基因工程 我国的人参、紫草等植物的细胞大规模培养获得成功。人参细胞培养已进入商业化生产;紫草细胞的发酵罐培养规模已达100升,其有效成分紫草素含量可达细胞干重的10%。 发根农杆菌(Agrobacterium thigogemes)可感染植物受伤部位,菌中Ri上的T-DNA片段整合到植物细胞基因组内,诱导毛状根产生。近年来发根培养的研究颇多,已有100多种植物,其中包括利用青蒿的发根培养获得青蒿素。更重要的是,Ri质粒是一个很好的转基因载体,被用作提高药用植物的有效成分,例如把发根农杆菌转入颠茹,发根中的莨菪碱含量增加5倍。

作业 植物产生的次生代谢产物对人类有什么作用?