勾股定理复习3.

Slides:



Advertisements
Similar presentations
2014 年浙江省数量资料 华图网校 刘有珍 数字推理 年份题量数字规律 三级等差 2. 和递推 3. 幂次修正 4. 倍数递推 5. 倍数递推 6. 特殊差级 7. 倍数递推 8. 倍数递推 9. 积递推 10. 分数数列
Advertisements

12.1 轴对称( 1 ) 给我最大快乐的, 不是已懂的知识, 而是不断的学习 高斯.
龙泉护嗓5班 优秀作业展.
诚信为本、操守为重、坚持准则、不做假账 第 九 章 会 计 报 表.
北师大版八年级数学下册第四章第一节 线段的比(1) 银川市第六中学:高亚玲.
江苏省2008年普通高校 招生录取办法 常熟理工学院学生处
合 同 法 主讲人: 教材:《合同法学》(崔建远) 2017/3/10.
新准则框架与首次执行 企业会计准则 主讲人:陈清宇.
20.1.1平均数 问题1:某市三个郊县的人数及人均耕地面积如下表,求这个郊县的人均耕地面积是多少?(精确到0.01公顷).
2016届高三期初调研 分析 徐国民
勾股定理 总复习.
勾股定理期末复习.
解直角三角形应用举例.
岳阳市教学竞赛课件 勾股定理 授课者 赵真金.
财经法规与会计职业道德 (3) 四川财经职业学院.
第三章 《圆》复习 第二课时 与圆有关的位置关系
第一篇:静力学 1 、研究的主要问题:力,力系的简化原理 及物体在力系作用下的平衡问题。 2 、研究方法:对物体(或物体系)进行受
1、由实验观察可知,当受力面积相同时,压力越 ,压力的作用效果越明显;当压力相同时,受力面积越 ,压力的作用效果越明显。 2、压强是反映 的物理量。物理学中,把 叫做压强。 3、3粒芝麻压成粉,均匀地分布在1cm2的面积上所产生的压强是.
温 馨 提 示 感谢您从“河姆渡教师教育网”下载使用该PPT文件,仅供学习参考,未经作者同意勿在公开场合使用,谢谢合作!
面向海洋的开放地区——珠江三角洲 山东省高青县实验中学:郑宝田.
实际问题与一元二次方程(四).
第十二单元 第28讲 第28讲 古代中国的科技和文艺   知识诠释  思维发散.
发展心理学 王 荣 山.
第四课时 常见天气系统 阜宁一中 姚亚林.
勾股定理 说课人:钱丹.
八年级 下册 第十七章 勾股定理 17.1 勾股定理 (第1课时) 湖北省赤壁市教研室 来小静.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
江苏省2009年普通高校 招生录取办法 江苏省教育考试院
同学们好! 肖溪镇竹山小学校 张齐敏.
第四章第一节 增值税法律制度2 主讲老师:梁天 经济法基础.
第七章 财务报告 主讲老师:王琼 上周知识回顾.
到定点的距离等于定长的所有点都在这个圆上!
2016中考复习 物理 第4讲 光现象 考点一 光的直线传播 考点二 光的反射 考点三 平面镜成像规律 考点四 光的折射
人教版数学四年级(下) 乘法分配律 单击页面即可演示.
12.3 角的平分线的性质 (第2课时).
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
垂直于弦的直径.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
1.1特殊的平行四边形 1.1菱形.
28.1 锐角三角函数(2) ——余弦、正切.
15.2线段的垂直平分线 六安皋城中学:付军. 15.2线段的垂直平分线 六安皋城中学:付军.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
第二十七章 相 似 27.2 相似三角形 相似三角形的性质.
直线和平面平行的判定.
线段的有关计算.
3.3勾股定理的简单应用 初二数学备课组 蔡晓琼.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
6.1 线段、射线、直线(2).
八年级期中数学试卷 学年下学期.
一个直角三角形的成长经历.
熔化和凝固.
等边三角形的性质及判定 … 平原四中 毕经建.
解读中考试题 分析教学策略 汶上县教研室 刘道明 2011年3月.
1.5 三角形全等的判定 第2课时 “边角边”与线段的垂直平分线的性质.
2.6 直角三角形(1).
岱山实验学校欢迎你 岱山实验学校 虞晓君.
基础会计.
(人教版) 数学八年级上册 12.3 等腰三角形(1) 磐石市实验中学.
北师大版八年级数学(上册) 第一章 勾 股 定 理 包头市一机四中 赵鲜丽.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
高中数学必修 平面向量的基本定理.
坚持,努力,机会留给有准备的人 第一章 四大金融资产总结 主讲老师:陈嫣.
美丽的旋转.
锐角三角函数(1) ——正 弦.
制作者:王翠艳 李晓荣 o.
邻边相等 有一个角 是直角 矩 形 两组对边 分别平行 平行四边形 正方形 两组对边 分别平行 菱 形 邻边相等 有一个角 是直角 四边形
解直角三角形复习课 ---解直角三角形的应用.
Presentation transcript:

勾股定理复习3

1、如图,在△ABC中,AB=AC=17,BC=16,求△ABC的面积。 练一练 1、如图,在△ABC中,AB=AC=17,BC=16,求△ABC的面积。 (2)求腰AC上的高。 A D 17 15 17 8 8 B C 16

2、如图6,在锐角△ABC中,AD⊥BC,AB=15,AD=12,AC=13,求△ABC的周长和面积。 9 5

E 如图,将一根25cm长的细木棍放入长,宽高分别为8cm、6cm、和 cm的长方体无盖盒子中,求细木棍露在外面的最短长度是多少? C B 20 6 C B 10 D 8 A

如图,公路MN和小路PQ在P处交汇,∠QPN=30°,点A处有一所学校,AP=160m,假设拖拉机行使时,周围100m内受噪音影响,那么拖拉机在公路MN上以18km/h的速度沿PN方向行驶时,学校是否受到噪音的影响?如果学校受到影响,那么受影响将持续多长时间? N E 80 P 30° Q 160 A M

如图,公路MN和小路PQ在P处交汇,∠QPN=30°,点A处有一所学校,AP=160m,假设拖拉机行使时,周围100m内受噪音影响,那么拖拉机在公路MN上以18km/h的速度沿PN方向行驶时,学校是否受到噪音的影响?如果学校受到影响,那么受影响将持续多长时间? N B D E P Q M A

如图,公路MN和小路PQ在P处交汇,∠QPN=30°,点A处有一所学校,AP=160m,假设拖拉机行使时,周围100m内受噪音影响,那么拖拉机在公路MN上以18km/h的速度沿PN方向行驶时,学校是否受到噪音的影响?如果学校受到影响,那么受影响将持续多长时间? N D 60 E 60 B 80 100 P 100 30° Q M 160 A

D 解:设BD=xm x 30-x B 由题意可知, BC+CA=BD+DA 10 ∴DA=30-x C A 20 在Rt△ADC中, 有一棵树(如图中的CD)的10m高处B有两只猴子 ,其中一只猴子爬下树走到离树20m处的池塘A 处,另一只猴子爬到树顶D后直接跃向池塘的A处 ,如果两只猴子所经过的距离相等,试问这棵树 多高。 D 解:设BD=xm x 30-x B 由题意可知, BC+CA=BD+DA 10 ∴DA=30-x C A 20 在Rt△ADC中, 解得x=5 ∴树高CD=BC+BD=10+5=15(m)

△ABC中,周长是24,∠C=90°,且 AB=9,则三角形的面积是多少? 解:由题意可知, C A B c a b

已知Rt△ABC中,∠C=90°,若a+b=14cm, c=10cm,则Rt△ABC的面积是( ) A.24cm2 B.36cm2 C.48cm2 D.60cm2 A c=10 a2+b2=102=100 a+b=14 C A B (a+b)2=142=196 c a 2ab=(a+b)2-(a2+b2) =196-100 =96 b

等腰三角形底边上的高为8,周长为32,则 三角形的面积为( ) A、56 B、48 C、40 D、32 B A x2+82=(16-x)2 x=6 16-x 8 BC=2x=12 C B x x D

如图,∠B=∠C=∠D=∠E=90°,且AB=CD=3, BC=4,DE=EF=2,则求AF的长。 A 3 C B 10 4 3 3 E D 2 2 2 F 4 2

如图,一条河同一侧的两村庄A、B,其中A、B 到河岸最短距离分别为AC=1km,BD=2km, CD=4cm,现欲在河岸上建一个水泵站向A、B 两村送水,当建在河岸上何处时,使到A、B两 村铺设水管总长度最短,并求出最短距离。 B A 2 5 1 P D C 4 1 1 E A′ 4

如图,已知:等腰直角△ABC中,P为斜边BC上的任一点. 求证:PB2+PC2=2PA2 . A D B P C