第六章 红外光谱分析 第一节 概 述 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到 分子的振动-转动光谱,这种光谱称为红外吸收光谱。 红外吸收光谱也是一种分子吸收光谱。

Slides:



Advertisements
Similar presentations
探究问题 1 、观察任意一 质点,在做什么运动? 动画课堂 各个质点在各自的平衡 位置附近做机械振动,没 有随波迁移。 结论 1 :
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
仪 器 分 析 实 验仪 器 分 析 实 验 主讲人:刘江涛 重庆师范大学 化学学院.
第一章 红外吸收光谱分 析法 一、概述 introduction 二、红外吸收光谱产生的 条件 condition of Infrared absorption spectroscopy 三、分子中基团的基本振 动形式 basic vibration of the group in molecular.
红外吸收光谱 学习要求 红外光谱基本原理 红外光谱与分子结构 红外图谱解析 红外光谱仪 样品制备方法 红外光谱法的应用 拉曼光谱简介.
  红外、拉曼介绍 .
一、概述 二、红外光谱与有机化合物结构 三、分子中基团的基本振动形式 四、影响峰位变化的因素
§3.4 空间直线的方程.
1.非线性振动和线性振动的根本区别 §4-2 一维非线性振动及其微分方程的近似解法 方程
碰撞 两物体互相接触时间极短而互作用力较大
第一节 红外光谱分析基本原理 第二节 仪器简介与实验技术 第三节 影响振动频率的因素 第四节 红外特征吸收与光谱解析 第五节 拉曼光谱法
3.3 红外光谱仪 3.3.1 红外吸收光谱仪的类型 目前主要有三种类型红外光谱仪:(1)光栅色散型红外光谱仪,(2)Fourier(傅立叶)变换红外光谱仪。(3)非色散型光度计。
第4章 红外光谱实用技术 中国医药科技出版社 中国药科大学.
Infrared spectrophotometry,IR
第四章 红外吸收光谱分析.
模块8:红外光谱分析IR 陈燕舞.
仪器分析实验 固体试样的红外光谱分析 中心实验室 崔 颖
红外光谱法 Infrared Analysis.
第五章 红外吸收光谱法 第一节 概述 红外光谱的历史 1800年英国科学家赫谢尔发现红外线 1936年世界第一台棱镜分光单光束红外光谱仪制成
Infrared Absorption Spectrometry,IR
第四节 红外光谱分析 一、试样的制备 (一) 气态样品
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
红外光谱分析 高素君
Presenter: 宫曦雯 Partner: 彭佳君 Instructor:姚老师
光学谐振腔的损耗.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
ACD/ChemSketch软件在有机化学教学中的简单应用
第五章 振动光谱 分子的红外吸收和Raman散射光谱可用来阐明分子结构. 基于力常数和结构信息的简正坐标分析方法可以表征振动模式和频率.
§2.6 红外谱图解析 各官能团的特征吸收是解析谱图的基础 (1)首先依据谱图推出化合物碳架类型
NaI(TI)单晶伽马能谱仪实验验证 朱佩宇 2008年1月3日.
第十章 方差分析.
§7.4 波的产生 1.机械波(Mechanical wave): 机械振动在介质中传播过程叫机械波。1 2 举例:水波;声波.
第二章 红 外 光 谱 红外光谱 第一节 基本知识 第二节 红外光谱的 重要区段 第三节 在结构分析中的应用.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
第三单元 从微观结构看物质的多样性 同分异构现象.
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
过程自发变化的判据 能否用下列判据来判断? DU≤0 或 DH≤0 DS≥0.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
Home Work 现代科学中的化学键能及其广泛应用 罗渝然(Yu-Ran Luo)
激光器的速率方程.
第十一章 配合物结构 §11.1 配合物的空间构型 §11.2 配合物的化学键理论.
第15章 量子力学(quantum mechanics) 初步
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
光合作用的过程 主讲:尹冬静.
四、标准加入法 (Q=0) 序 号 测定液浓度 c c c 测定液体积 V V V 标液浓度 cS cS cS
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
第4课时 绝对值.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第18 讲 配合物:晶体场理论.
H核磁共振谱图解析举例 解析NMR谱: 共振信号的数目,位置,强度和裂分情况 信号的数目: 分子中有多少种不同类型的质子
分数再认识三 真假带分数的练习课.
守恒法巧解金属与硝酸反应的计算题.
§17.4 实物粒子的波粒二象性 一. 德布罗意假设(1924年) 波长 + ? 假设: 实物粒子具有 波粒二象性。 频率
§2.4 典型化合物的红外光谱 1. 烷烃 C-H 伸缩振动(3000 – 2850 cm1 )
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
第四章 红外光谱 4.1 基本原理 3.1.1波长和波数 电磁波的波长(  )、频率( v)、能量(E)之间的关系:
第 二节 化学计量在实验中的应用.
第十八章 红外吸收光谱分析法 infrared absorption spectroscopy,IR 第五节 激光拉曼光谱分析法
本底对汞原子第一激发能测量的影响 钱振宇
三角 三角 三角 函数 余弦函数的图象和性质.
位似.
红外吸收光谱法模块之 任务5:液体样品的红外吸收 光谱绘制与解析.
实验十八 图谱解析实验 根据谱图,推定未知苯系物的结构
第三章 紫外和可见吸收光谱 §3.1 基本原理 电子跃迁: * ,n* , * , n* 能量大,波长短,远紫外
Presentation transcript:

第六章 红外光谱分析 第一节 概 述 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到 分子的振动-转动光谱,这种光谱称为红外吸收光谱。 红外吸收光谱也是一种分子吸收光谱。 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。

第一节 概述 一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为 0.75 ~ 1000µm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5µm ),中红外光区(2.5 ~ 25µm ),远红外光区(25 ~ 1000µm )。 近红外光区(0.75 ~ 2.5µm ) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及

第一节 概述 含氢原子团化合物的定量分析。 中红外光区(2.5 ~ 25µm ) 第一节 概述 含氢原子团化合物的定量分析。 中红外光区(2.5 ~ 25µm ) 绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 远红外光区 (25 ~ 1000µm ) 该区的吸收带主要是由气体分子中的纯转动跃迁、

第一节 概述 振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。 由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 红外吸收光谱一般用T~曲线或T~ 波数曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长(单位为µm ),或波数(单位为cm-1)。

第一节 概述 二、红外光谱法的特点 波长与波数之间的关系为: 波数/ cm-1 =104 /(  / µm ) 第一节 概述 波长与波数之间的关系为: 波数/ cm-1 =104 /(  / µm ) 中红外区的波数范围是4000 ~ 400 cm-1 。 二、红外光谱法的特点 紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子

第一节 概述 量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且该法是鉴定化合物和测定分子结构的最有用方法之一。

第二节 基本原理 一、产生红外吸收的条件 1 . 辐射光子具有的能量与发生振动跃迁所需的跃迁能量 相等 第二节 基本原理 一、产生红外吸收的条件 1 . 辐射光子具有的能量与发生振动跃迁所需的跃迁能量 相等 红外吸收光谱是分子振动能级跃迁产生的。因为分子振动能级差为0.05~1.0eV,比转动能级差(0.0001  0.05eV)大,因此分子发生振动能级跃迁时,不可避免地伴随转动能级的跃迁,因而无法测得纯振动光谱,但为了讨论方便,以双原子分子振动光谱为例说明红外光谱产生的条件。若把双原子分子(A-B)的两个原子看作

第二节 基本原理 两个小球,把连结它们的化学键看成质量可以忽略不计的弹簧,则两个原子间的伸缩振动,可近似地看成沿键轴方向的间谐振动。由量子力学可以证明,该分子的振动总能量(E)为: E= ( +1/2)h(=0,1,2,) 式中为振动量子数(  =0,1,2,……);E是与振动量子数相应的体系能量;为分子振动的频率。 在室温时,分子处于基态(=0),E= 1/2h,此时,伸缩振动的频率很小。当有红外辐射照射到分子时,若红外辐射的光子(L)所具有的能量(EL)恰好等于

第二节 基本原理 分子振动能级的能量差(△E振)时,则分子将吸收红外辐射而跃迁至激发态,导致振幅增大。分子振动能级的能量差为 第二节 基本原理 分子振动能级的能量差(△E振)时,则分子将吸收红外辐射而跃迁至激发态,导致振幅增大。分子振动能级的能量差为 △E振=△h 又光子能量为 EL=hL 于是可得产生红外吸收光谱的第一条件为: EL =△E振 即L=△

第二节 基本原理 表明,只有当红外辐射频率等于振动量子数的差值与分子振动频率的乘积时,分子才能吸收红外辐射,产生红外吸收光谱。 第二节 基本原理 表明,只有当红外辐射频率等于振动量子数的差值与分子振动频率的乘积时,分子才能吸收红外辐射,产生红外吸收光谱。 分子吸收红外辐射后,由基态振动能级(=0)跃迁至第一振动激发态(=1)时,所产生的吸收峰称为基频峰。因为△=1时,L=,所以 基频峰的位置(L)等于分子的振动频率。 在红外吸收光谱上除基频峰外,还有振动能级由基态( =0)跃迁至第二激发态( =2)、第三激发态( =3),所产生的吸收峰称为倍频峰。

第二节 基本原理 由=0跃迁至=2时, △=2,则L=2,即吸收的红外线谱线( L )是分子振动频率的二倍,产生的吸收峰称为二倍频峰。 由=0跃迁至=3时, △=3,则L=3,即吸收的红外线 谱线( L )是分子振动频率的三倍,产生的吸收峰称为三倍频峰。其它类推。在倍频峰中,二倍频峰还比较强。三倍频峰以上,因跃迁几率很小,一般都很弱,常常不能测到。 由于分子非谐振性质,各倍频峰并非正好是基频峰的整数倍,而是略小一些。以HCl为例:

第二节 基本原理 基频峰(0→1) 2885.9 cm-1 最强 二倍频峰( 0→2 ) 5668.0 cm-1 较弱 第二节 基本原理 基频峰(0→1) 2885.9 cm-1 最强 二倍频峰( 0→2 ) 5668.0 cm-1 较弱 三倍频峰( 0→3 ) 8346.9 cm-1 很弱 四倍频峰( 0→4 ) 10923.1 cm-1 极弱 五倍频峰( 0→5 ) 13396.5 cm-1 极弱 除此之外,还有合频峰(1+2,21+2,),差频峰( 1-2,21-2, )等,这些峰多数很弱,一般不容易辨认。倍频峰、合频峰和差频峰统称为泛频峰。

第二节 基本原理 (2)辐射与物质之间有耦合作用 第二节 基本原理 (2)辐射与物质之间有耦合作用 为满足这个条件,分子振动必须伴随偶极矩的变化。红外跃迁是偶极矩诱导的,即能量转移的机制是通过振动过程所导致的偶极矩的变化和交变的电磁场(红外线)相互作用 发生的。分子由于构成它的各原子的电负性的不同,也显示不同的极性,称为偶极子。通常用分子的偶极矩()来描述分子极性的大小。当偶极子处在电磁辐射的电场中时,该电场作周期性反转,偶极子将经受交替的作用力而使偶极矩增加或减少。由于偶极子具有一定的原有振动频率,显然,只有当辐射频率与偶极子

第二节 基本原理 频率相匹时,分子才与辐射相互作用(振动耦合)而增加它的振动能,使振幅增大,即分子由原来的基态振动跃迁到较高振动能级。因此,并非所有的振动都会产生红外吸收,只有发生偶极矩变化(△≠0)的振动才能引起可观测的红外吸收光谱,该分子称之为红外活性的; △=0的分子振动不能产生红外振动吸收,称为非红外活性的。 当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团

第二节 基本原理 就吸收一定频率的红外光,产生振动跃迁。如果用连续改变频率的红外光照射某样品,由于试样对不同频率的红外光吸收程度不同,使通过试样后的红外光在一些波数范围减弱,在另一些波数范围内仍然较强,用仪器记录该试样的红外吸收光谱,进行样品的定性和定量分析。 二、双原子分子的振动 分子中的原子以平衡点为中心,以非常小的振幅(与原子核之间的距离相比)作周期性的振动,可近似的看作简谐振动。这种分子振动的模型,以经典力学的方法可把两个质量为M1和M2的原子看成钢体小球,连接

第二节 基本原理 两原子的化学键设想成无质量的弹簧,弹簧的长度r就是分子化学键的长度。由经典力学可导出该体系的基本振动频率计算公式 第二节 基本原理 两原子的化学键设想成无质量的弹簧,弹簧的长度r就是分子化学键的长度。由经典力学可导出该体系的基本振动频率计算公式 =(1/2)(k/) 或 波数 =(1/2c)(k/) 式中k为化学键的力常数,其定义为将两原子由平衡位置伸长单位长度时的恢复力(单位为Ncm-1)。单键、双键和三键的力常数分别近似为5、10和15 Ncm-1;c为光速(2.9981010cm s-1),为折合质量,单位为g,且=m1m2/(m1+m2)

第二节 基本原理 根据小球的质量和相对原子质量之间的关系 波数 = 1302(k /Ar)1/2 Ar为折合相对原子质量 第二节 基本原理 根据小球的质量和相对原子质量之间的关系 波数 = 1302(k /Ar)1/2 Ar为折合相对原子质量 影响基本振动频率的直接原因是相对原子质量和化学键的力常数。化学键的力常数k越大,折合相对原子质量Ar越小,则化学键的振动频率越高,吸收峰将出现在高波数区;反之,则出现在低数区,例如C-C、 CC、 CC三种碳碳键的质量相同,键力常数的顺序是三键>双键>单键。因此在红外光谱中, CC的吸收峰出现在2222 cm-1,而CC约在1667 cm-1 ,C-C在1429 cm-1

第二节 基本原理 对于相同化学键的基团,波数与相对原子相对质量平方根成反比。例如C-C、C-O、C-N键的力常数相近,但相对折合质量不同,其大小顺序为C-C < C-N < C-O,因而这三种键的基频振动峰分别出现在1430 cm-1 、1330 cm-1 、1280 cm-1附近。 需要指出,上述用经典方法来处理分子的振动是宏观处理方法,或是近似处理的方法。但一个真实分子的振动能量变化是量子化;另外,分子中基团与基团之间,基团中的化学键之间都相互有影响,除了化学键两端的原子质量、化学键的力常数影响基本振动频率外,还与内部因素(借光因素)和外部因素(化学环境)有关。

第二节 基本原理 三、多原子分子的振动 多原子分子由于原子数目增多,组成分子的键或基团和空间结构不同,其振动光谱比双原子分子要复杂。但是可以把它们的振动分解成许多简单的基本振动,即简正振动。 1 . 简正振动 简正振动的振动状态是分子质心保持不变,整体不转动,每个原子都在其平衡位置附近做简谐振动,其振动频率和相位都相同,即每个原子都在同一瞬间通过其平衡位置,而且同时达到其最大位移值。分子中任何一个

第二节 基本原理 复杂振动都可以看成这些简正振动的线性组合。 2. 简正振动的基本形式 一般将振动形式分成两类:伸缩振动和变形振动。 第二节 基本原理 复杂振动都可以看成这些简正振动的线性组合。 2. 简正振动的基本形式 一般将振动形式分成两类:伸缩振动和变形振动。 (1)伸缩振动 原子沿键轴方向伸缩,键长发生变化而键角不变的振动称为伸缩振动,用符号表示。它又可以分为对称伸缩振动( s)和不对称伸缩振动(  as )。对同一基团,不对称伸缩振动的频率要稍高于对称伸缩振动。 (2)变形振动(又称弯曲振动或变角振动)

第二节 基本原理 基团键角发生周期变化而键长不变的振动称为变形振动,用符号表示。变形振动又分为面内变形和面外变形振动。面内变形振动又分为剪式(以表示)和平面摇摆振动(以表示)。面外变形振动又分为非平面摇摆(以表示)和扭曲振动(以表示)。 教材P.57图3.3 表示甲基、亚甲基的各种振动形式。由于变形振动的力常数比伸缩振动的小,因此,同一基团的变形振动都在其伸缩振动的低频端出现。 3 . 基本振动的理论数 简正振动的数目称为振动自由度,每个振动自由度

第二节 基本原理 相当于红外光谱图上一个基频吸收带。设分子由n个原子组成,每个原子在空间都有3个自由度,原子在空间的位置可以用直角坐标中的3个坐标x、y、z表示,因此,n个原子组成的分子总共应有3n个自由度,即3n种运动状态。但在这3n种运动状态中,包括3个整个分子的质心沿x、y、z方向平移运动和3个整个分子绕x、y、z轴的转动运动。这6种运动都不是分子振动,因此,振动形式应有(3n-6)种。但对于直线型分子,若贯穿所有原子的轴是在x方向,则整个分子只能绕y、z轴转动,因此,直线性分子的振动形式为(3n-5)种。

第二节 基本原理 教材P.57图3.5表示水—非线型分子和二氧化碳—线型分子的振动形式。 第二节 基本原理 教材P.57图3.5表示水—非线型分子和二氧化碳—线型分子的振动形式。 每种简正振动都有其特定的振动频率,似乎都应有相应的红外吸收带。实际上,绝大多数化合物在红外光谱图上出现的峰数远小于理论上计算的振动数,这是由如下原因引起的: (1)没有偶极矩变化的振动,不产生红外吸收; (2)相同频率的振动吸收重叠,即简并; (3)仪器不能区别那些频率十分接近的振动,或吸收带 很弱,仪器检测不出;

第二节 基本原理 四、吸收谱带的强度 (4)有些吸收带落在仪器检测范围之外。 第二节 基本原理 (4)有些吸收带落在仪器检测范围之外。 例如,线型分子二氧化碳在理论上计算其基本振动数为4,共有4个振动形式,在红外图谱上有4个吸收峰。但在实际红外图谱中,只出现667 cm-1和2349 cm-1两个基频吸收峰。这是因为对称伸缩振动偶极矩变化为零,不产生吸收,而面内变形和面外变形振动的吸收频率完全一样,发生简并。 四、吸收谱带的强度 红外吸收谱带的强度取决于分子振动时偶极矩的变化,而偶极矩与分子结构的对称性有关。振动的对称性越高,

第二节 基本原理 振动中分子偶极矩变化越小,谱带强度也就越弱。一般地,极性较强的基团(如C=0,C-X等)振动,吸收强度较大;极性较弱的基团(如C=C、C-C、N=N等)振动,吸收较弱。红外光谱的吸收强度一般定性地用很强(vs)、强(s)、中(m)、弱(w)和很弱(vw)等表示。按摩尔吸光系数的大小划分吸收峰的强弱等级,具体如下:  >100 非常强峰(vs) 20< <100 强峰(s) 10< <20 中强峰(m) 1< <10 弱峰(w)

第三节 基团频率和特征吸收峰 物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和CC等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。

第三节 基团频率和特征吸收峰 一、基团频率区和指纹区 (一)基团频率区 第三节 基团频率和特征吸收峰 一、基团频率区和指纹区 (一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动

第三节 基团频率和特征吸收峰 与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。 基团频率区可分为三个区域: (1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、 C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

第三节 基团频率和特征吸收峰 当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。 胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。 C-H的伸缩振动可分为饱和和不饱和的两种。 饱和的C-H伸缩振动出现在3000 cm-1以下,约3000

第三节 基团频率和特征吸收峰 ~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;- CH2基的吸收在2930 cm-1 和2850 cm-1附近;CH(不是炔烃)基的吸收基出现在2890 cm-1 附近,但强度很弱。 不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。 苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆稍弱,但谱带比较尖锐。 不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。

第三节 基团频率和特征吸收峰 叁键CH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。 第三节 基团频率和特征吸收峰 叁键CH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。 (2)2500~1900 为叁键和累积双键区。 主要包括-CC、 -CN等等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。对于炔烃类化合物,可以分成R-CCH和R-C C-R两种类型, R-CCH的伸缩振动出现在2100~2140 cm-1附近, R-C C-R出现在2190~2260 cm-1附近。如果是R-C C-R,因为分子是对称,则为非红外活性。-C N基的 伸缩振动在非共轭的情况下出现在2240~2260 cm-1附近。当与不饱和

第三节 基团频率和特征吸收峰 键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子, -C N基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C N基越近, -C N基的吸收越弱,甚至观察不到。 (3)1900~1200 cm-1为双键伸缩振动区 该区域重要包括三种伸缩振动: ① C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中 很特征的且往往是最强的吸收,以此很容易判断酮类、 醛类、酸类、酯类以及酸酐等有机化合物。酸酐的羰

第三节 基团频率和特征吸收峰 基吸收带由于振动耦合而呈现双峰。 ② C=C伸缩振动。烯烃 的C=C伸缩振动出现在1680~1620 第三节 基团频率和特征吸收峰 基吸收带由于振动耦合而呈现双峰。 ② C=C伸缩振动。烯烃 的C=C伸缩振动出现在1680~1620 cm-1 ,一般很弱。单核芳烃的C=C伸缩振动出现在 1600 cm-1和1500 cm-1附近,有两个峰,这是芳环的骨 架结构,用于确认有无芳核的存在。 ③ 苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围, 是C-H面外和C=C面内变形振动的泛频吸收,虽然强 度很弱,但它们的吸收面貌在表征芳核取代类型上是 有用的。

第三节 基团频率和特征吸收峰 (二)指纹区 1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。 其中1375 cm-1的谱带为甲基的C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在1300~1000 cm-1 ,是该区域最强的峰,也较易识别。 (2)900~650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。

第三节 基团频率和特征吸收峰 例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。

第三节 基团频率和特征吸收峰 二、常见官能团的特征吸收频率 三、影响基团频率的因素 (教材P.63~64) 第三节 基团频率和特征吸收峰 二、常见官能团的特征吸收频率 (教材P.63~64) 三、影响基团频率的因素 基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。因此了解影响基团频率的因素,对解析红外光谱和推断分子

第三节 基团频率和特征吸收峰 内部因素: 结构都十分有用。 影响基团频率位移的因素大致可分为内部因素和外部因素。 1. 电子效应 第三节 基团频率和特征吸收峰 结构都十分有用。 影响基团频率位移的因素大致可分为内部因素和外部因素。 内部因素: 1. 电子效应 包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。 (1)诱导效应(I 效应) 由于取代基具有不同的电负性,通过静电诱导作用,

第三节 基团频率和特征吸收峰 引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位移。 第三节 基团频率和特征吸收峰 引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位移。 例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。 (2)中介效应(M效应)

第三节 基团频率和特征吸收峰 当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原子的共轭作用,使C=O上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。 对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。 2 . 氢键的影响

第三节 基团频率和特征吸收峰 氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体, C=O键频率出现在1700 cm-1 。 分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 3. 振动耦合 当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动

第三节 基团频率和特征吸收峰 相互作用。其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。振动耦合常出现在一些二羰基化合物中,如,羧酸酐。 (4)Fermi共振 当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或发生裂分,这种现象称为Fermi共振。

第三节 基团频率和特征吸收峰 外部因素 外部因素主要指测定时物质的状态以及溶剂效应等因素。 第三节 基团频率和特征吸收峰 外部因素 外部因素主要指测定时物质的状态以及溶剂效应等因素。 同一物质的不同状态,由于分子间相互作用力不同,所得到光谱往往不同。 分子在气态时,其相互作用力很弱,此时可以观察到伴随振动光谱的转动精细结构。 液态和固态分子间作用力较强,在有极性基团存在时,可能发生分子间的缔合或形成氢键,导致特征吸收带频率、强度和形状有较大的改变。例如,丙酮在气态时的

第三节 基团频率和特征吸收峰 C-H为1742 cm-1 ,而在液态时为1718 cm-1 。 第三节 基团频率和特征吸收峰 C-H为1742 cm-1 ,而在液态时为1718 cm-1 。 在溶液中测定光谱时,由于溶剂的种类、溶剂的浓度和测定时的温度不同,同一种物质所测得的光谱也不同。通常在极性溶剂中,溶质分子的极性基团的伸缩振动频率随溶剂极性的增加而向低波数方向移动,并且强度增大。因此,在红外光谱测定中,应尽量采用非极性的溶剂。

第四节 红外光谱仪 一、色散型红外光谱仪 目前主要有两类红外光谱仪:色散型红外光谱仪和Fourier(傅立叶)变换红外光谱仪。 第四节 红外光谱仪 目前主要有两类红外光谱仪:色散型红外光谱仪和Fourier(傅立叶)变换红外光谱仪。 一、色散型红外光谱仪 色散型红外光谱仪的组成部件与紫外-可见分光光度计相似,但对没一个部件的结构、所用的材料及性能与 紫外- -可见分光光度计不同。它们的排列顺序也略有不同,红外光谱仪的样品是放在光源和单色器之间;而紫外- -可见分光光度计是放在单色器之后。 色散型红外光谱仪原理示意图(教材P.6 5)

第四节 红外光谱仪 1 . 光源 红外光谱仪中所用的光源通常是一种惰性固体,同电加热使之发射高强度的连续红外辐射。常用的是Nernst灯或硅碳棒。Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的中空棒和实心棒。工作温度约为1700℃,在此高温下导电并发射红外线。但在室温下是非导体,因此,在工作之前要预热。它的特点是发射强度高,使用寿命长,稳定性较好。缺点是价格地硅碳棒贵,机械强度差,操作不如硅碳棒方便。硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃左右。

第四节 红外光谱仪 2 . 吸收池 因玻璃、石英等材料不能透过红外光,红外吸收池要用可透过红外光的NaCl、KBr、CsI、KRS-5(TlI 58%,TlBr42%)等材料制成窗片。用NaCl、KBr、CsI等材料制成的窗片需注意防潮。固体试样常与纯KBr混匀压片,然后直接进行测定。 3 . 单色器 单色器由色散元件、准直镜和狭缝构成。 色散元件常用复制的闪耀光栅。由于闪耀光栅存在次级光谱的干扰,因此,需要将光栅和用来分离次光谱的

第四节 红外光谱仪 滤光器或前置棱镜结合起来使用。 4 . 检测器 常用的红外检测器有高真空热电偶、热释电检测器和碲镉汞检测器。 第四节 红外光谱仪 滤光器或前置棱镜结合起来使用。 4 . 检测器 常用的红外检测器有高真空热电偶、热释电检测器和碲镉汞检测器。 高真空热电偶是利用不同导体构成回路时的温差电现象,将温差转变为电位差。 热释电检测器是利用硫酸三苷肽的单晶片作为检测元件。硫酸三苷肽(TGS)是铁电体,在一定的温度以下,能产生很大的极化反应,其极化强度与温度有关,温度升高,极化强度降低。将TGS薄片正面真空渡铬(半透明),

第四节 红外光谱仪 背面镀金,形成两电极。当红外辐射光照射到薄片上时,引起温度升高,TGS极化度改变,表面电荷减少,相当于“释放”了部分电荷,经放大,转变成电压或电流方式进行测量。 碲镉汞检测器(MCT检测器)是由宽频带的半导体碲化镉和半金属化合物碲化汞混合形成,其组成为Hg1-xCdx Te ,x≈0.2,改变x值,可获得测量波段不同灵敏度各异的各种MCT检测器。 5. 记录系统

第四节 红外光谱仪 二、Fou rier变换红外光谱仪(FTIR) 第四节 红外光谱仪 二、Fou rier变换红外光谱仪(FTIR) Fourier变换 红外光谱仪 没有色散元件,主要由光源(硅碳棒、高压汞灯)、Michelson干涉仪、检测器、计算机和记录仪组成。核心部分为Michelson干涉仪,它将光源来的信号以干涉图的形式送往计算机进行Fourier变换的数学处理,最后将干涉图还原成光谱图。它与色散型红外光度计的主要区别在于干涉仪和电子计算机两部分。 Fourier变换 红外光谱仪工作原理; 仪器中的Michelson干涉仪的作用是将光源发出的光

第四节 红外光谱仪 分成两光束后,再以不同的光程差重新组合,发生干涉现象。当两束光的光程差为/2的偶数倍时,则落在检测器上的相干光相互叠加,产生明线,其相干光强度有极大值;相反,当两束光的光程差为/2的奇数倍时,则落在检测器上的相干光相互抵消,产生暗线,相干光强度有极小值。由于多色光的干涉图等于所有各单色光干涉图的加合,故得到的是具有中心极大,并向两边迅速衰减的对称干涉图。 干涉图包含光源的全部频率和与该频率相对应的强度信息,所以如有一个有红外吸收的样品放在干涉仪的光

第四节 红外光谱仪 Fourier变换红外光谱仪的特点: 第四节 红外光谱仪 路中,由于样品能吸收特征波数的能量,结果所得到的干涉图强度曲线就会相应地产生一些变化。包括每个频率强度信息的干涉图,可借数学上的Fourier变换 技术对每个频率的光强进行计算,从而得到吸收强度或透过率和波数变化的普通光谱图。 Fourier变换红外光谱仪的特点: (1)扫描速度极快 Fourier变换仪器是在整扫描时间内同时测定所有频率的信息,一般只要1s左右即可。因此,它可用于测定不稳定物质的红外光谱。而色散型红外光谱仪,在任何一

第四节 红外光谱仪 瞬间只能观测一个很窄的频率范围,一次完整扫描通常需要8、15、30s等。 (2)具有很高的分辨率 第四节 红外光谱仪 瞬间只能观测一个很窄的频率范围,一次完整扫描通常需要8、15、30s等。 (2)具有很高的分辨率 通常Fourier变换 红外光谱仪分辨率达0.1~0.005 cm-1,而一般棱镜型的仪器分辨率在1000 cm-1处有3 cm-1 ,光栅型红外光谱仪分辨率也只有0.2cm-1 。 (3)灵敏度高 因Fourier变换 红外光谱仪 不用狭缝和单色器,反射镜面又大,故能量损失小,到达检测器的能量大,可检测10-8g数量级的样品。

第四节 红外光谱仪 除此之外,还有光谱范围宽(1000~10 cm-1 );测量精度高,重复性可达0.1%;杂散光干扰小;样品不受因红外聚焦而产生的热效应的影响;特别适合于与气相色谱联机或研究化学反应机理等。

第五节 试样的处理和制备 一、红外光谱法对试样的要求 要获得一张高质量红外光谱图,除了仪器本身的因素外,还必须有合适的样品制备方法。 第五节 试样的处理和制备 要获得一张高质量红外光谱图,除了仪器本身的因素外,还必须有合适的样品制备方法。 一、红外光谱法对试样的要求 红外光谱的试样可以是液体、固体或气体,一般应要求: (1)试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。

第五节 试样的处理和制备 二、制样的方法 (2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 第五节 试样的处理和制备 (2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 (3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1 .气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。

第五节 试样的处理和制备 2 . 液体和溶液试样 (1)液体池法 第五节 试样的处理和制备 2 . 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接直接滴在两片盐片之间,形成液膜。 对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行

第五节 试样的处理和制备 测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3 . 固体试样 (1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)107Pa压力在油压机上压成透明薄片,即可用语测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。

第五节 试样的处理和制备 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。 (3)薄膜法 第五节 试样的处理和制备 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。 (3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。 当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

第六节 红外光谱法的应用 一、定性分析 红外光谱法广泛用于有机化合物的定性鉴定和结构分析。 1 . 已知物的鉴定 第六节 红外光谱法的应用 红外光谱法广泛用于有机化合物的定性鉴定和结构分析。 一、定性分析 1 . 已知物的鉴定 将试样的谱图与标准的谱图进行对照,或者与文献上的谱图进行对照。如果两张谱图各吸收峰的位置和形状完全相同,峰的相对强度一样,就可以认为样品是该种标准物。如果两张谱图不一样,或峰位不一致,则说明两者不为同一化合物,或样品有杂质。如用计算机谱图检索,则采用相似度来判别。使用文献上的谱图应当

第六节 红外光谱法的应用 注意试样的物态、结晶状态、溶剂、测定条件以及所用仪器类型均应与标准谱图相同。 2 . 未知物结构的测定 第六节 红外光谱法的应用 注意试样的物态、结晶状态、溶剂、测定条件以及所用仪器类型均应与标准谱图相同。 2 . 未知物结构的测定 测定未知物的结构,是红外光谱法定性分析的一个重要用途。如果未知物不是新化合物,可以通过两种方式利用标准谱图进行查对: (1)查阅标准谱图的谱带索引,与寻找试样光谱吸收带相同的标准谱图; (2)进行光谱解析,判断试样的可能结构,然后在由化学分类索引查找标准谱图对照核实。

第六节 红外光谱法的应用 =1+n4+(n3-n1)/2 第六节 红外光谱法的应用 在对光谱图进行解析之前,应收集样品的有关资料和数据。了解试样的来源、以估计其可能是哪类化合物;测定试样的物理常数,如熔点、沸点、溶解度、折光率等,作为定性分析的旁证;根据元素分析及相对摩尔质量的测定,求出化学式并计算化合物的不饱和度 =1+n4+(n3-n1)/2 式中n4、n3、n1、分别为分子中所含的四价、三价和一价元素原子的数目。 当计算得=0时,表示分子是饱和的,应在链状烃及其不含双键的衍生物。

第六节 红外光谱法的应用 当=1时,可能有一个双键或脂环; 当=2时,可能有两个双键和脂环,也可能有一个叁键; 第六节 红外光谱法的应用 当=1时,可能有一个双键或脂环; 当=2时,可能有两个双键和脂环,也可能有一个叁键; 当=4时,可能有一个苯环等。 但是,二价原子如S、O等不参加计算。 谱图解析一般先从基团频率区的最强谱带开始,推测未知物可能含有的基团,判断不可能含有的基团。再从指纹区的谱带进一步验证,找出可能含有基团的相关峰,用一组相关峰确认一个基团的存在。对于简单化合物,

第六节 红外光谱法的应用 二、定量分析 确认几个基团之后,便可初步确定分子结构,然后查对标准谱图核实。 例题(教材P.70 ~ 73) 第六节 红外光谱法的应用 确认几个基团之后,便可初步确定分子结构,然后查对标准谱图核实。 例题(教材P.70 ~ 73) 3.几种标准谱图 (1)萨特勒(Sadtler)标准红外光谱图 (2)Aldrich红外谱图库 (3)Sigma Fourier红外光谱图库 二、定量分析 红外光谱定量分析是通过对特征吸收谱带强度的测量

第六节 红外光谱法的应用 来求出组份含量。其理论依据是朗伯-比耳定律。 第六节 红外光谱法的应用 来求出组份含量。其理论依据是朗伯-比耳定律。 由于红外光谱的谱带较多,选择的余地大,所以能方便地对单一组份和多组份进行定量分析。此外,该法不受样品状态的限制,能定量测定气体、液体和固体样品。因此,红外光谱定量分析应用广泛。但红外噶定量灵敏度较低,尚不适用于微量组份的测定。 (一)基本原理 1. 选择吸收带的原则 (1)必须是被测物质的特征吸收带。例如分析酸、酯、 醛、酮时,必须选择>C=O基团的振动有关的特征

第六节 红外光谱法的应用 吸收带。 (2)所选择的吸收带的吸收强度应与被测物质的浓度有 线性关系。 第六节 红外光谱法的应用 吸收带。 (2)所选择的吸收带的吸收强度应与被测物质的浓度有 线性关系。 (3)所选择的吸收带应有较大的吸收系数且周围尽可能 没有其它吸收带存在,以免干扰。 2 . 吸光度的测定 (1)一点法 该法不考虑背景吸收,直接从谱图中分析波数处读取谱图纵坐标的透过率,再由公式lg1/T=A计算吸光度。

第六节 红外光谱法的应用 (二)定量分析方法 实际上这种背景可以忽略的情况较少,因此多用基线法。 (2)基线法 第六节 红外光谱法的应用 实际上这种背景可以忽略的情况较少,因此多用基线法。 (2)基线法 通过谱带两翼透过率最大点作光谱吸收的切线,作为该谱线的基线,则分析波数处的垂线与基线的交点,与最高吸收峰顶点的距离为峰高,其吸光度A=lg(I0/I)。 (二)定量分析方法 可用标准曲线法、求解联立方程法等方法进行定量分析。