人类长寿的梦想 端粒与端粒酶 10应化 刘夷之.

Slides:



Advertisements
Similar presentations
2008 年诺贝尔生理学或医学奖授予 : 德国科学家 哈拉尔德 · 楚尔 · 豪森 两名法国科学家 弗朗索瓦丝 · 巴尔-西诺西 吕克 · 蒙塔尼.
Advertisements

行政院原住民族委員會 法規暨訴願審議委員會 102 年度原住民身分法實例演練講習: 原住民身分認定及救濟程序.
本校自民國 78 年於顏前校長世錫任內創設本系 設立鑑識科學學系大學部,專責鑑識人才之培養, 為目前國內唯一專門培育鑑識科學人才、研究鑑識 科學學術之大學學系,設系剛滿 20 年。自 85 年於姚 前校長高橋任內,設立鑑識科學研究所招收碩士生 ,民國 88 年於謝前校長瑞智任內先後獲內政部、教.
化疗知识讲座 台州博爱肿瘤医院 陈国卿. 一、化疗药物的抗癌机制 1 、抑制细胞增殖和肿瘤的生长是其主要作 用机理。 2 、对于新陈代谢旺盛的正常组织同样具有 毒性,如骨髓细胞,粘膜细胞。 3 、理想的药物 — 最大程度的抑制肿瘤细胞, 最小程度的影响正常细胞。 4 、基因药物是发展方向。
端粒与端粒酶保护染色体的解读 李苗 “ 端粒和端粒酶是如何保护染色体的 ” 2009 年诺贝尔生理学或医学奖获得者.
第二节 基因在亲子代间的传递. 1. 什么叫做遗传? 2. 什么叫做性状? 3. 性状是由什么决定的?
第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
植物生理 植物细胞生理基础 同工酶. 学习目标 Click to add title in here Click to add title n here  掌握同工酶的概念。  了解同工酶的意义。
第二章:生物科學與食品 第三節:基因改造食品.
上皮细胞生物学研究中心 成立以来开展的主要合作研究项目 日期 中国科学院 2002 合作单位 项目
端粒、端粒酶与人类 生科院21班151021程凯.
第三章 现代教育与人的发展.
肿瘤细胞生物学 Tumor cell biology
神创造万物及人类.
( Genetic Information Transfer )
第21课时 生物圈中的微生物 考 点 聚 焦 专 项 突 破 1.
國民中學 自然與生活科技 第二冊 第3章 生殖 3-1 細胞分裂 3-2 無性生殖 3-3 有性生殖.
生命科学发展史 孟 和 上海交通大学农业与生物学院
生命科学发展趋势、优先发展领域与资助思考
学校核心发展力 上海市建平中学 程红兵.
必修二 生物 (人教版).
高二生物 绪论 制作人:李 绒.
想一想 议一议 P74 我们常吃的蘑菇有根、茎、叶吗? 它们的生长是否需要光? 为什么说它们是真菌而不是植物呢?
三次科技革命 学习目标: 1.知道三次科技革命的时间、标志、发源地、理论基础、主要成就、主要特点及影响。 2.培养归纳历史知识的能力
一轮复习 细胞的增值.
王永慶遺產分配 第三組民法報告 4970T011 劉昭妤 4970T037 吳品怡 4970T090 袁如意
台南在地美食文化介紹 台南市鳳凰城文史協會 理事長 歐財榮.
第四章 细胞的增殖和分化 第三节 细胞的衰老和凋亡.
一、作者概說:    王壽來,民國三十八年生,山西省 五臺縣人,中興大學 法律系畢業,美國 喬治城大學碩士、臺灣師範大學 美術研究所碩博士。長期從事文化與外交工作,現任文建會 文化資產總管理處籌備處主任。   王壽來靈感多取自生活經驗,善用中外名言,描繪人生百態。著有《公務員快意人生》、《藝術‧收藏‧我》、《公務員DNA》、《和世界偉人面對面》等書。
细胞核是遗传信息库.
问 题 探 讨 1.DNA的中文全名是什么? 2.为什么DNA能够进行亲子鉴定? 3.你还能说出DNA鉴定技术在其他方面的应用吗?
导入新课 波能绕过障碍物产生衍射。既然光也是一种波,为什么在日常生活中难以观察到光的衍射现象呢?.
高中生物学必修Ⅰ 分子与细胞 前 言.
第4章 基因的表达 第1节 基因指导蛋白质的合成.
基因的表达 凌通课件.
13-14学年度生物学科教研室总结计划 2014年2月.
老化的細胞生物學 (1)細胞衰老(senescence) (2)基因體的不穩定(genomic instability)
必修1 分子与细胞 第二章 第三节 细 细胞溶胶 内质网 胞 核糖体 质 高尔基体 线粒体 第一课时 浙江省定海第一中学 黄晓芬.
关注生物技术的 伦理问题.
2015年高考历史质量分析报告 兰州市外国语高级中学 杨彩玲.
肝功能正常的小三阳注意事项.
突變 突變是指遺傳物質發生改變, 而影響到性狀的表現 例:白化症.
司法机关.
生物五界的分類方式.
Geophysical Laboratory
Harvard ManageMentor®
Harvard ManageMentor®
telomere and telomerase
胚胎原位杂交检测基因的时空表达模式.
人是由什么发育而来的? 一个受精卵.
第3节 细胞核——系统的控制中心 本节聚集: 1.细胞核有什么功能? 2. 细胞核的形态结构是怎样的?
第二节 核酸与细胞核.
复习:蛋白质的形成 几条肽链盘曲折叠形成的蛋白质 氨基酸 …….
超越自然还是带来毁灭 “人造生命”令全世界不安
遗传信息的携带者——核酸 授课教师:王建友.
G-蛋白偶联受体信号传导和膜转运机制研究进展
Unveiling the “Invisible” Regulatory States in RNA
遗传物质--核酸 核酸分子组成 核酸分子结构.
第三节 DNA生物合成过程.
AD相关LncRNA调控及分析方法研究 项目成员:魏晓冉 李铁志 指导教师:张莹 2018年理学院大学生创新创业训练计划项目作品成果展示
基因 遗传物质的结构单位和功能单位 肤色 基因 有遗传效应的DNA片段 眼皮单双 血型 控制生物性状 在染色体上呈线性排列.
非同源染色体:不是同源染色体的两条染色体
基因信息的传递.
BAFF在活动性SLE患者T细胞中的表达:
第三节 转录后修饰.
第十一章 RNA的生物合成 (转录).
五.有丝分裂分离和重组 (一) 有丝分裂重组(mitotic recombination) 1936 Curt Stern 发现
病理生理学教研室 细胞信号通路检测(一) 总蛋白提取.
证据运用 第八章 证据的运用 第一节 证据体系的结构及运用规则.
讨论:利用已经灭绝的生物DNA分子,真的能够使灭绝的生物复活吗?
Presentation transcript:

人类长寿的梦想 端粒与端粒酶 10应化 刘夷之

研究延长人类寿命的科学方向 1.人体冷冻术 2.纳米还原术 3.克隆与细胞培养技术 4.衰老基因

2009年诺贝尔生理学或医学奖 贡献:揭示了 “how chromosomes are protected by telomeres and the enzyme telomerase” (染色体是如何被端粒和端粒酶保护的)。 Elizabeth H. Blackburn伊丽莎白·布莱克本 Carol W. Greider 卡罗尔·格雷德 美国巴尔的摩约翰·霍普金斯医学院 Jack W. Szostak杰克·绍斯塔克 美国哈佛医学院 美国加利福尼亚 旧金山大学

“人体的正常细胞经过有限的分裂次数后即进入衰老阶段,停止增殖而最终走向衰亡。呈恶性生长的癌细胞似乎摆脱了正常衰老过程的约束,在无拘无束地高速生长中获得“永生”。衰老和肿瘤相互对立却又同为人类的“天敌”,两者之间千丝万缕的关联一直以来为人们所关注。 近年来端粒酶热点的出现被认为是联结着肿瘤和衰老研究的一条全新纽带,国际权威期刊单元、科学等逐年递增地刊载相关论文和报道,对端粒和端粒酶这一研究方向予以相当关注,认为有可能对肿瘤、衰老等重大生命课题产生深远影响。”

端粒的位置

端粒的结构与功能 端粒 (telomere)也称端区,是真核生物线性染色体的天然两末端,呈膨大粒状,由染色体末端DNA重复片断(富含G、C)与蛋白质组成(端粒结合蛋白和端粒相关蛋白)。

保护染色体结构和功能的完整性 染色体 对外: 抵御核酸酶等外界 对内: 染色体脱氧核糖核酸的 因素的袭击 末端复制问题

细胞永生化 端粒维持 端粒 端粒 5’ 染色体DNA 5’ 端粒消耗 细胞衰老

端粒酶的发现 1984年,卡罗尔通过实验证明,端粒 DNA的延伸是通过“ 酶” 来完成的,且这种酶的活性不依赖于DNA模板。这种酶后来被命名为“端粒酶” (telomerase)。

端粒酶的结构与功能 目前认为端粒酶主要由3个部分构成,即端粒酶 RNA(telomerase RNA,TR)、端粒酶相关蛋白质(telomerase — associated protein, TP1/ TP2) 和端粒酶逆转录酶(telomerase reverse transcriptase,TERT)。 其中,TERT是端粒酶的催化亚基,也是决定端粒酶活性的关键因素,其表达水平的高低与端粒酶活性呈平行关系。研究发现,TR和TP1在正常组织中有广泛表达,而TERT只在肿瘤组织及某些高增殖组织中表达,并决定着这些组织的端粒酶活性;正常组织缺乏TERT表达,因而没有端粒酶活性。

Telomerase http://www.apocalypse-soon.com/images/telomere.gif

端粒酶与细胞存亡 端粒酶 端粒 端粒酶催化端粒不断延长,从而抵消因染色体复制、细胞分裂导致的脱氧核糖核酸缩短,使得染色体脱氧核糖核酸完好无损,细胞能够顺利地分裂繁殖。

端粒酶的结构与功能 端粒酶的重要功能是通过识别并结合富含胞嘧啶C的端粒末端,以自身RNA为模板合成端粒的DNA重复序列,从而阻止随着DNA复制和细胞分裂所造成的端粒的不断缩短, 进而稳定染色体的长度,避免细胞因端粒丢失所导致的凋亡。因此,端粒酶在细胞永生化和肿瘤发生中起着重要作用。

端粒维持机制研究 端粒酶在生殖细胞、早期胚胎发育、干细胞和许多癌症细胞中有很高的活性。而在人的正常体细胞中,由于端粒酶活性很低或处于无法检测的水平,端粒的缩短无法得到弥补, 最终会产生细胞融合导致细胞死亡。

Fig. Telomere, telomerase and cellular lifespan

端粒与端粒酶的研究现状 端粒酶逆转衰老过程的研究 2010年11月,美国哈佛大学医学院的研究者 Jaskelioff M等在 Nature 杂志发表了有关端粒酶和衰老研究的重要发现。他们利用基因工程技术成功地将端粒酶缺陷型小鼠的衰老过程逆转。 迄今为止,这是首次有小鼠动物实验成功地逆转衰老过程,意味着一些老化的器官也有 “重生” 的可能。这项突破成果或有望防治脑退化症 (如老年痴呆症)、糖尿病和心脏病等疾病,甚至有望打开永恒青春的奥秘。

端粒与端粒酶的研究现状 存在的困惑 1、端粒长度与个体寿命的关系 我们现在还不能确定什么样的端粒算正常,多长或多短又算不正常。 鼠的端粒比人类长近5-10倍, 寿命却比人类短的多,端粒长度与个体寿命及组织器官的预期寿命并不一致。

端粒与端粒酶的研究现状 2、抗衰老与抗肿瘤的矛盾 激活端粒酶有助于延缓衰老, 但是也面临一些难题 , 如可能增加罹患癌症的几率; 另外,动物不具有类似人的端粒老化机制, 而没有适合的模式生物可用于药物测试。

端粒与端粒酶的研究现状 目前人们还不清楚端粒耗损是衰老的原因还是伴随的结果。 • 目前人们也不清楚生物体衰老时细胞老化是怎么导致器官老化 的,为什么各个器官系统几乎同时老化, 有什么调控网络,是如何协同导致各器官老化的同步化的。

端粒与端粒酶的研究现状 G-四联体的形成使得端粒酶不能与端粒很好的结 合,也就失去了其延长端粒的作用。因此,设计一种能够促进 G-四联体的形成或者稳定G-四联体结构的化合物,将是肿瘤治疗研究的方向之一。