第 17 章 非线性电路 重点 非线性电阻元件特性 非线性直流电路方程 图解法.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
3.4 空间直线的方程.
基本电路理论 第四章 电阻性网络的一般分析与网络定理 上海交通大学本科学位课程 电子信息与电气工程学院2004年6月.
网络线图如图所示,已知部分支路电流,求电流i2。
2.6 节点电压法. 2.6 节点电压法 目的与要求 1.会对三节点电路用节点电压法分析 2.掌握弥尔曼定理.
第二章(1) 电路基本分析方法 本章内容: 1. 网络图论初步 2. 支路(电流)法 3. 网孔(回路)电流法 4. 节点(改进)电压法.
本节介绍:方法的定义及方法的应用 从方程的来源入手 确定方程的个数 对具体问题的应用
1.9 支路电流法 上节课我们给大家讲了基尔霍夫定律,有了这个基础,再结合我们以前学过的欧姆定律和电阻串并联的特点,复杂电路基本上就可以求解了。当然求解复杂电路的方法很多,我们本节只给大家介绍一种最基本的方法——支路电流法。
第三章 线性网络的一般分析方法 本章重点: 回路电流法 节点电压法.
电路分析教案 孙 宏 伟.
第三章线性电阻电路的一般分析法 3.1 基尔霍夫定律的独立方程 3.2 支路分析法 3.3 节点分析法 3.4 网孔分析法和回路分析法
3.3 节点电压法 一、节点电压法 在具有n个节点的电路(模型)中,可以选其中一个节点作为参考点,其余(n-1)个节点的电位,称为节点电压。
介休市职业中学 电工技术基础与技能 项目3 分析直流电路.
1.8 支路电流法 什么是支路电流法 支路电流法的推导 应用支路电流法的步骤 支路电流法的应用举例.
第四节 节点分析法 一、节点方程及其一般形式 节点分析法:以节点电压为待求量列写方程。 R6 节点数 n = 4 R4 R5 R3 R1
电工电子技术 电子电路教研室.
项目二 电路的基本分析方法 (时间:6次课,12学时).
合肥市职教中心 李劲松.
第二章 电路分析方法 龚淑秋 制作.
第2章 电路分析方法 习题课.
4.1 叠加定理 (Superposition Theorem)
电路总复习 第1章 电路模型和电路定律 第8章 相量法 第2章 电阻的等效变换 第9章 正弦稳态电路的分析 第3章 电阻电路的一般分析
主 编:李 文 王庆良 副主编:孙全江 韦 宇 主 审:于昆伦
支路电流法.
第二章 电路的分析方法 2.1 支路电流法 支路电流法是分析电路最基本的方法。这种方法把电路中各支路的电流作为变量,直接应用基尔霍夫的电流定律和电压定律列方程,然后联立求解,得出各支路的电流值。 图示电路有三条支路,设三条支路的电流分别为: 、 、 节点的电流方程 : 节点a: 节点b: 这两个方程不独立,保留一个。
第二章 直流电阻电路的分析计算 第一节 电阻的串联、并联和混联 第二节 电阻的星形与三角形联接及等效变换 第三节 两种电源模型的等效变换
计算机硬件技术基础 计算机硬件技术基础课程群 傅扬烈 学期 淮海工学院 计算机工程学院 计算机硬件技术基础课程群.
第2章 直流电阻电路的分析计算.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
习题1.1: 一个四端元件的端子分别标为1、2、3、4。已知U12 =5V,U23 =-3V,U43 =6V。 (1)求U41 ;
第2章 电阻电路的等效变换 本章重点 首 页 引言 2.1 电路的等效变换 2.2 电阻的串联和并联 2.3
1-16 电路如图所示。已知i4=1A,求各元件电压和吸收功率,并校验功率平衡。
3.7叠加定理 回顾:网孔法 = 解的形式:.
3.3 支路法 总共方程数 2 b 1、概述 若电路有 b 条支路,n 个节点 求各支路的电压、电流。共2b个未知数
第3章 电路叠加与等效变换 3.1 线性电路叠加 3.2 单口网络等效的概念 3.3 单口电阻网络的等效变换 3.4 含源单口网络的等效变换
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
计算机电路基础(1) 课程简介.
第三章 电路定理 3.1 齐次性定理和叠加定理 齐次性定理
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
第一章 半导体材料及二极管.
第二章 双极型晶体三极管(BJT).
(1) 求正弦电压和电流的振幅、角频率、频率和初相。 (2) 画出正弦电压和电流的波形图。
第 4 章 非 线 性 直 流 电 路 非线性电路是广泛存在于客观世界。基于线性方程的电路定理不能用于非线性电路。作为基础,本章研究最简单的非线性电路即非线性直流电路。首先介绍非线性电阻元件特性和非线性直流电路方程的列写方法。然后依次介绍三种近似分析法:数值分析法、分段线性近似法和图解法。 本章目次.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
物理 九年级(下册) 新课标(RJ).
ACAP程序可计算正弦稳态平均功率 11-1 图示电路中,已知 。试求 (1) 电压源发出的瞬时功率。(2) 电感吸收的瞬时功率。
第二章(1) 电路基本分析方法 本章内容: 1. 网络图论初步 2. 支路(电流)法 3. 网孔(回路)电流法 4. 节点(改进)电压法.
第三章:恒定电流 第4节 串联电路与并联电路.
xt4-1 circuit data 元件 支路 开始 终止 控制 元 件 元 件 类型 编号 结点 结点 支路 数 值 数 值 V R R
1.5电路的线图 回顾: + U1 - I1 - U4 + - U2 + I2 n · I4 I3 + U3 -
回顾: 支路法 若电路有 b 条支路,n 个节点 求各支路的电压、电流。共2b个未知数 可列方程数 KCL: n-1
6-1 求题图6-1所示双口网络的电阻参数和电导参数。
直线和圆的位置关系 ·.
实验一、 基尔霍夫定律 一、实验目的 二、实验原理与说明 即 Σi=0 1.验证基尔霍夫定律; 2.加深对参考方向的理解;
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
实验二 基尔霍夫定律 510实验室 韩春玲.
复习: 欧姆定律: 1. 内容: 导体中的电流与导体两端的电压成正比,与导体的电阻成反比。 2. 表达式: 3. 变形公式:
第十二章 拉普拉斯变换在电路分析中的应用 ( S域分析法)
第四章 电路原理 4.1 叠 加 定 理 4.2 替 代 定 理 4.3 戴维南定理与诺顿定理 4.4 最大功率传输定理
第14章 二端口网络 14.1 二端口网络 一端口:流入一个端子电流等于流出另一端子电流 二端口:满足端口条件的2对端子 举例:
第 3 章 电 路 定 理 1 置换定理 2 齐性和叠加定理 3 等效电源定理 4 特勒根定理 5 互易定理 6 对偶原理.
2.5.3 功率三角形与功率因数 1.瞬时功率.
Presentation transcript:

第 17 章 非线性电路 重点 非线性电阻元件特性 非线性直流电路方程 图解法

17.1 非线性电阻 示例(1) 示例(2) 非线性电阻:端口上的电压、电流关系不是通过 U-I 平面坐标原点的直线,不满足欧姆 定律。 非线性电阻特性示例: 示例(1) 示例(2) 电压是电流的单值函数,反之不然 。 此类电阻称为电流控制型非线性电阻 记作: 电流是电压的单调函数,称为单调型非线性电阻:

示例(3) 电流是电压的单值函数,反之不然。 此类电阻称为电压控制型非线性电阻记作: 对比: 线性电阻:线性电阻是没有方向性的,其特性曲线对称于坐标原点。 非线性电阻:通常具有方向性,正向和反向的导电性不同,它们的特性曲线对坐标原点不对称。

17.2 非线性直流电路方程 1 电路中只含一个非线性电阻 非线性电路的分析思路:依据基尔霍夫定律和元件性质列写电路方程。由于含有非线性电阻,故所得电路方程是非线性代数方程,求解非线性代数方程得到电路解答。基于线性电路推导出来的定理不能用于解非线性电路。 1 电路中只含一个非线性电阻 利用线性电路的戴维南定理(或诺顿定理)对线性部分进行化简,得图(b)所示的简单非线性电路。 (2) 列写图(b)电路方程。若为流控型电阻即U=U(I),则应以电流I为变量列KVL方程: 若为压控型电阻,即I=I(U),则应以电压U 为变量列KVL方程: (3) 如果想进一步求出线性部分的解答,则可根据上述求得的解答,用电压源或电流 源置换非线性电阻,得图(c)所示的线性直流电路,对其求解便得到所需解答。

例 解 图示电路,非线性电阻特性为 (单位:V,A) 试求电压 U 和U1的值。 代入特性方程得到电压的两个解答: 将a,b左边的线性含源一端口网络等效成 戴维南电路,如图(b)。对图(a)电路,当 a,b断开时求得开路电压 (3) 用电压源置换非线性电阻得图(c)所示的 线性直流电路。由节点分析法得: 等效电阻 (2) 对图(b)列KVL方程: 求解得到U1与 U 的关系: 当U分别等于U’和U”时,由上式求得电 压U1的两个值:

例 解 图示电路中非线性电阻特性为 (单位:A,V), 求US分别为2V、10V和12V时的电压U。 对图中电路列KVL方程: 将R及非线性电阻特性代入式(1)得: (1) 当 时, (2) 当 (3) 当

(1)电路中的非线性电阻全部为压控非线性电阻情况 2 电路中含有多个非线性电阻 解题思路:若电路中含有较多的非线性电阻,宜对电路列写方程组,根据非线性电阻 是压控的还是流控的列写不同的方程。 (1)电路中的非线性电阻全部为压控非线性电阻情况 右图中的非线性电阻为压控非线性电阻,即: 此时,须用电压作为待求量,把非线性电阻的电流 作为变量,列写改进节点法方程。 用节点电压表示上述方程中的非线性电阻电流

(2) 电路中的非线性电阻一个是压控的,一个是流控的,设 对流控电阻R1要将其电流I1选为待求量而不加以消去。这样得到的改进节点方程为: (3) 电路中的非线性电阻全部为流控非线性电阻,即 用电流为待求量列写回路电流方程 再用回路电流表示非线性电阻电压

17.3 图解法 1 对于只含有一个非线性电阻的电路,首先 对电路中的线性部分进行戴维南等效; 2 在坐标平面上画出等效电路端口上的特性曲 线,它是一条直线; 3 在同一坐标平面上画出非线性电阻的特性曲 线; 4 两条线的交点便是电路解答。

例 解 图(a)所示为分析张弛振荡器工作点的电路。设图中电压源US=9V, 非线性电阻为氖管,其特性曲线如图(b)所示。(1)要求将电路的工 作点设计在Q1和Q2之间(即负斜率段),问电阻 R 的取值范围怎样? (2)若电阻R=1.5kΩ,求此时非线性电阻电压 U 和电流 I。 解 由图(b)可见,Q1点电流I1=1.5mA,电压U1=4V。 当工作点位于Q1时,电阻R须满足 : Q2 点电流 I2=6mA,电压 U2=2V。当工作点位于Q2时, 电阻R须满足: 所以,当 R 的取值在以上两个电阻之间时则满足要求(1)。 (2) 当R=1.5kΩ时,线性部分的特性方程为 作出它在平面上的特性曲线并求出交点,在图中读出交点值。