2017/4/10 电工基础 机电科 电子教研组 王宇浩
第2章 直流电阻电路分析 学习要点 支路电流法与节点电压法 叠加定理与戴维南定理 电路等效概念及其应用
第2章 直流电阻电路分析 2.1 简单电路分析 2.2 复杂电路分析 2.3 电压源与电流源的等效变换 2.4 电路定理 第2章 直流电阻电路分析 2.1 简单电路分析 2.2 复杂电路分析 2.3 电压源与电流源的等效变换 2.4 电路定理 2.5 含受源电路的分析 2.6 非线性电阻电路的分析
2.1 简单电路分析 简单电路就是可以利用电阻串、并联方法进行分析的电路。应用这种方法对电路进行分析时,先利用电阻串、并联公式求出该电路的总电阻,然后根据欧姆定律求出总电流,最后利用分压公式或分流公式计算出各个电阻的电压或电流。
2.1.1 电阻的串联 n个电阻串联可等效为一个电阻
分压公式 两个电阻串联时
2.1.2 电阻的并联 n个电阻并联可等效为一个电阻
分流公式 两个电阻并联时
2.2 复杂电路分析 复杂电路就是不能利用电阻串并联方法化简,然后应用欧姆定律进行分析的电路。解决复杂电路问题的方法有两种。一种方法是根据电路待求的未知量,直接应用基尔霍夫定律列出足够的独立方程式,然后联立求解出各未知量。另一种方法是应用等效变换的概念,将电路化简或进行等效变换后,再通过欧姆定律、基尔霍夫定律或分压、分流公式求解出结果。
2.2.1 支路电流法 支路电流法是以支路电流为未知量,直接应用KCL和KVL,分别对节点和回路列出所需的方程式,然后联立求解出各未知电流。 2.2.1 支路电流法 支路电流法是以支路电流为未知量,直接应用KCL和KVL,分别对节点和回路列出所需的方程式,然后联立求解出各未知电流。 一个具有b条支路、n个节点的电路,根据KCL可列出(n-1)个独立的节点电流方程式,根据KVL可列出b-(n-1)个独立的回路电压方程式。
图示电路 (1)电路的支路数b=3,支路电流有I1 、I2、I3三个。 (2)节点数n=2,可列出2-1=1个独立的KCL方程。 节点a (3)独立的KVL方程数为3-(2-1)=2个。 回路I 回路Ⅱ
例:如图所示电路,用支路电流法求各支路电流及各元件功率。 解:2个电流变量I1和I2,只需列2个方程。 对节点a列KCL方程: I2=2+I1 对图示回路列KVL方程: 5I1+10I2=5 解得:I1=-1A I2=1A I1<0说明其实际方向与图示方向相反。
各元件的功率: 5Ω电阻的功率:P1=5I12=5×(-1)2=5W 10Ω电阻的功率:P2=10I22=5×12=10W 5V电压源的功率:P3=-5I1=-5×(-1)=5W 因为2A电流源与10Ω电阻并联,故其两端的电压为:U=10I2=10×1=10V,功率为: P4=-2U=-2×10=-20W 由以上的计算可知,2A电流源发出20W功率,其余3个元件总共吸收的功率也是20W,可见电路功率平衡。
2.2.2 节点电压法 对只有两个节点的电路,可用弥尔曼公式直接求出两节点间的电压。 弥尔曼公式: 2.2.2 节点电压法 对只有两个节点的电路,可用弥尔曼公式直接求出两节点间的电压。 弥尔曼公式: 式中分母的各项总为正,分子中各项的正负符号为:电压源us的参考方向与节点电压U的参考方向相同时取正号,反之取负号;电流源Is的参考方向与节点电压U的参考方向相反时取正号,反之取负号。
如图电路,由KCL有 I1+I2-I3-Is1+Is2=0 设两节点间电压为U,则有: 因此可得:
例:用节点电压法求图示电路各支路电流。 解: 求出U后,可用欧姆定律求各支路电流。
2.3 电压源与电流源的等效变换 2.3.1 电路等效变换的概念 2.3 电压源与电流源的等效变换 2.3.1 电路等效变换的概念 电路的等效变换,就是保持电路一部分电压、电流不变,而对其余部分进行适当的结构变化,用新电路结构代替原电路中被变换的部分电路。 图示两电路,若 ,则两电路相互等效,可以进行等效变换。变换后,若两电路加相同的电压,则电流也相同。
2.3.2 电压源与电流源的等效变换 电压源与电流源对外电路等效的条件为: 或 且两种电源模型的内阻相等。
例:用电源模型等效变换的方法求图(a)电路的电流I1和I2。 解:将原电路变换为图(c)电路,由此可得:
2.4 电路定理 2.4.1 叠加定理 在任何由线性电阻、线性受控源及独立源组成的电路中,每一元件的电流或电压等于每一个独立源单独作用于电路时在该元件上所产生的电流或电压的代数和。这就是叠加定理。 说明:当某一独立源单独作用时,其他独立源置零。
例: +- 4V R1 R2 2A 2 I 求 I 解:应用叠加定理 R1 2A I R2 +- R1 R2 I 4V +
2.4.2 戴维南定理 对外电路来说,任何一个线性有源二端网络,都可以用一个电压源即恒压源和电阻串联的支路来代替,其恒压源电压等于线性有源二端网络的开路电压UOC,电阻等于线性有源二端网络除源后两端间的等效电阻Ro。这就是戴维南定理。
例:用戴维南定理求图示电路的电流I。 解:(1)断开待求支路,得有源二端网络如图(b)所示。由图可求得开路电压UOC为:
(2)将图(b)中的电压源短路,电流源开路,得除源后的无源二端网络如图(c)所示,由图可求得等效电阻Ro为:
(3)根据UOC和Ro画出戴维南等效电路并接上待求支路,得图(a)的等效电路,如图(d)所示,由图可求得I为:
2.4.3 诺顿定理 对外电路来说,任何一个线性有源二端网络,都可以用一个电流源即恒流源和电阻并联的电路来代替,其恒流源电流等于线性有源二端网络的短路电流ISC,电阻等于线性有源二端网络除源后两端间的等效电阻Ro。这就是诺顿定理。
例:用诺顿定理求图示电路的电流I。 解:(1) 将待求支路短路,如图(b)所示。由图可求得短路电流ISC为:
(2)将图(b)中的恒压源短路,得无源二端网络如图(c)所示,由图可求得等效电阻Ro为: (3)根据ISC和Ro画出诺顿等效电路并接上待求支路,得图(a)的等效电路,如图(d)所示,由图可求得I为:
2.5 含受控源电路的分析 2.5.1 受控源 (1)概念 受控源的电压或电流受电路中另一部分的电压或电流控制。 (2)分类及表示方法 2.5 含受控源电路的分析 2.5.1 受控源 (1)概念 受控源的电压或电流受电路中另一部分的电压或电流控制。 (2)分类及表示方法 VCVS 电压控制电压源 VCCS 电压控制电流源 CCVS 电流控制电压源 CCCS 电流控制电流源
VCVS I1=0 U2=U1 CCVS U1=0 U2=rI1 VCCS I1=0 I2=gU1 CCCS U1=0 I2=βI1
(3)受控源的功率 如采用关联方向: P =U1I1 +U2I2=U2I2
2.5.2 含受控源电路的分析 1、支路电流法 用支路电流法写方程时,应先把受控源暂时作为独立源去列写支路电流方程。但因受控源输出的电压或电流是电路中某一支路电压或电流(即控制量)的函数,所以,一般情况下还要用支路电流来表示受控源的控制量,使未知量的数目与独立方程式数目相等,这样才能将所需求解的未知量解出来。 支路电流方程: 辅助方程: 解之得:
2、叠加定理 应用叠加定理时,独立源的作用可分别单独考虑,但受控源不能单独作用,且独立源作用时受控源必须保留。 5A电流源单独作用: 10V电压源单独作用: 叠加,得: 解得: 解得:
3、戴维南定理 应用等效电源定理分析含受控源的电路时,不能将受控源和它的控制量分割在两个网络中,二者必须在同一个网络中。至于求等效电源的内阻R0时,有源二端网络中的独立电源均应为零,但受控源是否为零则取决于控制量是否为零。因此R0不能用电阻串并联的方法计算。一般采用以下两种方法计算R0。 (1)开路短路法。即求出有源二端网络的开路电压U0C和短路电流ISC,则: (2)外加电压法。即在不含独立源的二端网络(内含受控源)两端之间加一个电压U,求出在这个电压作用下输入到网络的电流I,则:
例 应用戴维南定理求电流I2。
2.6 非线性电阻电路的分析 2.6.1 非线性电阻 非线性电阻的阻值不是一个常数,而是随着电压或电流变动。计算非线性电阻的阻值时,必须指明工作电流或工作电压,称为非线性元件的工作点,如图所示伏安特性曲线上的Q点。 工作点处电压与电流的比值称为静态电阻或直流电阻R 工作点附近电压变化量ΔU和电流变化量ΔI的比值的极限称为动态电阻或微变电阻r
2.6.2 非线性电阻电路分析 非线性电阻R的伏安特性曲线①与负载线②的交点Q确定的电压U与电流I。 负载线由方程 确定。