第一章 绪 论 生物化学 研究生物体的化学组成和生命过程中化学变化规律的科学,称为生物化学。

Slides:



Advertisements
Similar presentations
第十八章 其他微生物 一、教学目的 了解:支原体、立克次体、衣原体、螺旋体、真 菌的种类、生物学性状、致病性、实验诊断 与防治原则。 二、教学方法 讲授、提问、讨论、教学互动 三、教学手段 多媒体教学.
Advertisements

第三章 非细胞微生物 【知识目标】 1 .掌握病毒及噬菌体的形态结构及化学组成,理 解病毒的增殖过程。 2 .了解噬菌体的检测方法及与发酵工业的关系。 【技能目标】 1 .学会识别噬菌体在发酵工业中造成的污染。 2 .学会噬菌体检测的方法并处理噬菌体的污染。
行政院原住民族委員會 法規暨訴願審議委員會 102 年度原住民身分法實例演練講習: 原住民身分認定及救濟程序.
狂犬病 狂犬病晚期的犬. 一、狂犬病病原 : 狂犬 病毒属于弹状病毒, 75×180nm 大小,外层为含脂 质的囊膜,内部为含核蛋白的 核心,对脂溶剂敏感,为单链 RNA 病毒。病毒主要存在于感 染动物的唾液和脑组织。 狂犬病病毒结构.
本校自民國 78 年於顏前校長世錫任內創設本系 設立鑑識科學學系大學部,專責鑑識人才之培養, 為目前國內唯一專門培育鑑識科學人才、研究鑑識 科學學術之大學學系,設系剛滿 20 年。自 85 年於姚 前校長高橋任內,設立鑑識科學研究所招收碩士生 ,民國 88 年於謝前校長瑞智任內先後獲內政部、教.
化疗知识讲座 台州博爱肿瘤医院 陈国卿. 一、化疗药物的抗癌机制 1 、抑制细胞增殖和肿瘤的生长是其主要作 用机理。 2 、对于新陈代谢旺盛的正常组织同样具有 毒性,如骨髓细胞,粘膜细胞。 3 、理想的药物 — 最大程度的抑制肿瘤细胞, 最小程度的影响正常细胞。 4 、基因药物是发展方向。
生物化学 Biochemistry 临床生物化学教研室 陈正炎教授. 绪 论 ( Introduction ) 生物化学( biochemistry ) 是研究生物体 内化学分子及其化学反应,从分子水平探讨 生命现象本质的一门科学。 一、什么是生物化学 ? 生物化学 --- 生命的化学.
第二节 基因在亲子代间的传递. 1. 什么叫做遗传? 2. 什么叫做性状? 3. 性状是由什么决定的?
主题二 生命的基础 细胞的结构和功能. 细胞壁 细胞膜 细胞质 细胞核 化学组成 功能 成分 结构 基质 细胞器 结构 功能.
选修3 现代生物技术专题第三节 蛋白质工程.
第二章:生物科學與食品 第三節:基因改造食品.
第三章 植物繁殖器官的结构及发育 主要内容: 花的组成;花和花序的种类;花的生理功能;发育及生殖过程;果实的结构及发育;被子植物生活史。
第三章 细胞基本知识概要 细胞的基本概念 非细胞形态的生命体 ——病毒及其与细胞的关系 原核细胞与真核细胞.
矿物质与畜禽营养 项目目标 理解矿物质的营养原理;能应用矿物质的营养特点,预防和治疗畜禽矿物质元素缺乏症
猪 生 产 主讲:刘小明.
神创造万物及人类.
基因工程及转基因生物.
第21课时 生物圈中的微生物 考 点 聚 焦 专 项 突 破 1.
选修Ⅲ 现代生物科技专题 专题1 基因工程 1.3 基因工程的应用 淮南一中 张秀娥.
國民中學 自然與生活科技 第二冊 第3章 生殖 3-1 細胞分裂 3-2 無性生殖 3-3 有性生殖.
生物第七章 生命科學與人生 第七章第1節 基因的表現 遺傳物質—去氧核糖核酸(DNA) 染色體:細胞核上(細胞未分裂前稱為染色質)
生命科学发展趋势、优先发展领域与资助思考
1.3 基因工程的应用 基因工程的实际应用领域有: 农牧业、工业、环境、能源、医学卫生等 应用生物:植物、动物、微生物.
学校核心发展力 上海市建平中学 程红兵.
专题 1、4 基因工程、生物技术的安全和伦理问题 考纲内容 能力要求 命题展望 1. 基因工程的诞生 2.基因工程的原理及技术
必修二 生物 (人教版).
高二生物 绪论 制作人:李 绒.
想一想 议一议 P74 我们常吃的蘑菇有根、茎、叶吗? 它们的生长是否需要光? 为什么说它们是真菌而不是植物呢?
课时2 DNA的结构与复制 一、高考要求 内容标准及等级要求 学习要求 概述DNA分子结构的主要特点(B) 说出DNA分子的基本单位
辽宁省精品资源共享课 药物化学 沈阳药科大学药物化学教研室.
一轮复习 细胞的增值.
第一章 基因工程 第二节 基因工程的原理和技术.
台南在地美食文化介紹 台南市鳳凰城文史協會 理事長 歐財榮.
医学分子生物学 Medical Molecular Biology
阐明生命现象的规律, 必须建立在阐明生物大分子结构基础上。 第2章 组成细胞的分子 第4节 细胞中的糖类和脂类.
第4节 细胞中的糖类和脂质.
第4节 细胞中的糖类和脂质 高州四中高一生物备课组 黄恒.
人类科学史上 三大工程 曼哈顿计划(原子弹) 阿波罗计划(登月) 人类基因组计划 了解人类自身,操纵生命 其意义比以上两个计划更为深远.
第3节 细胞核——系统的控制中心 肥西中学 蔡林.
一、作者概說:    王壽來,民國三十八年生,山西省 五臺縣人,中興大學 法律系畢業,美國 喬治城大學碩士、臺灣師範大學 美術研究所碩博士。長期從事文化與外交工作,現任文建會 文化資產總管理處籌備處主任。   王壽來靈感多取自生活經驗,善用中外名言,描繪人生百態。著有《公務員快意人生》、《藝術‧收藏‧我》、《公務員DNA》、《和世界偉人面對面》等書。
病原:痘病毒属于痘病毒科、脊椎动物痘病毒亚科,该亚科现有8个属,各属成员对动物的致病作用有明显的差异,但它们构造差异不大。
寻找生命的螺旋 深圳市育才中学 黄俊芳.
导入新课 波能绕过障碍物产生衍射。既然光也是一种波,为什么在日常生活中难以观察到光的衍射现象呢?.
①在医药卫生方面,基因工程有哪些应用和前景?
基因对性状的控制.
第2节 基因对性状的控制.
mRNA 转录、翻译和DNA复制的区别 细胞核 细胞核 转录 翻译 DNA复制 场所 模板 原料 信息传递 时间 产物 生长发育过程中
遗 传 生命与繁衍的保证.
13-14学年度生物学科教研室总结计划 2014年2月.
第六章 科学观察与科学实验.
必修1 分子与细胞 第二章 第三节 细 细胞溶胶 内质网 胞 核糖体 质 高尔基体 线粒体 第一课时 浙江省定海第一中学 黄晓芬.
突變 突變是指遺傳物質發生改變, 而影響到性狀的表現 例:白化症.
现代生物技术概论 赵奇 生命科学系 校级精品课程.
专题六 变异、育种和进化 必考点16  “千变万化”的生物变异.
基因突变 授课人:羊金华
第四章 基因的表达 基因指导蛋白质的合成 (第二课时) 高二年级(理) 教师姓名:葛红.
高考复习研讨交流 ——生物 西安:王澜 2014、7、16.
第三章 基因工程制药.
细菌对抗生素的抗性机制 ——大环内酯类 罗修琪.
基因指导蛋白质的合成 淮安市洪泽湖高级中学:王建友. 基因指导蛋白质的合成 淮安市洪泽湖高级中学:王建友.
第3节 细胞核——系统的控制中心 本节聚集: 1.细胞核有什么功能? 2. 细胞核的形态结构是怎样的?
第二节 核酸与细胞核.
复习:蛋白质的形成 几条肽链盘曲折叠形成的蛋白质 氨基酸 …….
遗传信息的携带者——核酸 授课教师:王建友.
第四章 病毒 一、 病毒的一般特性 二、 噬菌体.
遗传信息的传递与表达.
第四节 遗传信息的表达 —RNA和蛋白质合成
习题课 《医学遗传学基础》 (第二版) 王静颖 王懿 主编 科 学 出 版 社.
园艺专业《园艺植物遗传与良种繁育》 基因的表达 平凉市电大庄浪工作站 苏显扬.
高三生物二轮专题复习 有机物与生命活动.
Presentation transcript:

第一章 绪 论 生物化学 研究生物体的化学组成和生命过程中化学变化规律的科学,称为生物化学。 (Introduction) 生物化学 研究生物体的化学组成和生命过程中化学变化规律的科学,称为生物化学。 分子生物学 通常将生物大分子的结构、功能及其代谢调控等的研究,称为分子生物学。 从广义的角度可将分子生物学视为生物化学的重要组成部分。

一、生物化学发展简史 (一)古代生物化学的发展 生物化学是既古老又年轻的一门学科。在我国可追溯到公元前21世纪,而欧洲约为200年前。直到 1903年才由德国科学家C.A. Neuberg 提出 “Biochemistry” 而成为一门独立的学科。 (一)古代生物化学的发展 1. 公元前21世纪我国人民已能用曲(麯 )造酒,称曲为酒母,即酶。 2. 公元前12世纪前,我们的祖先已能利用豆、谷、麦等为原料,制成酱、饴和醋,饴是淀粉酶催化淀粉水解的产物,这足已表明是酶学的萌芽时期。

3. 汉代淮南王刘安制作豆腐,说明当时在提取豆类蛋白质方面已经应用了近代生物化学及胶体化学的方法。 4. 公元7世纪孙思邈用猪肝治疗雀目的记载,实际上是用富含维生素A的猪肝治疗夜盲症。 5. 北宋沈括记载的“秋石阴炼法”,实际上就是采用皂角汁沉淀等方法从尿中提取性激素制剂。 6. 明末宋应星记载的用石灰澄清法将甘蔗制糖的工艺,被近代公认为最经济的方法。

(二)近代生物化学的发展 1. 18世纪下半叶,德国药师K.Scheele首次从动植物 材料中,分离出乳酸、柠檬酸、酒石酸、苹果酸、尿 酸和甘油等。 2.法国化学家A.L.Lavoisier的实验证明,有机体的 呼吸和蜡烛的燃烧同样都是碳氢化合物的氧化。在氧 化过程中,氧被消耗而水和二氧化碳被生成,同时放 出热能。这一发现被视为生物氧化研究的开端。 3. 1868年瑞士青年医生F.Miescher发现了核素,后 来定名为核酸,为后续的研究作出了重要贡献。

(三)现代生物化学的发展 1. 20世纪初期 德国化学家E. Fischer在发现缬氨酸、脯氨酸和羟脯氨酸之后,又用化学方法合成了18个氨基酸的多肽。 我国生物化学家吴宪等在血液分析方面,创立了血滤液的制备及血糖的测定等方法,并在蛋白质的研究中,提出了蛋白质变性的学说。 在营养学方面,发现了必需氨基酸、必需脂肪酸及多种维生素;在内分泌学方面,发现了多种激素;在酶学方面,酶结晶获得成功。 在物质代谢方面,确定了主要代谢途径,包括糖代谢及三羧酸循环、脂肪酸β氧化、尿素合成等。

2. 20世纪50年代初期发现了蛋白质α螺旋的二级结构形式,完成了胰岛素的氨基酸全序列分析等。 1953年J.D.Watson和F.H.Crick 提出的 DNA双螺旋结构模型,为揭示遗传信息传递规律奠定了基础。 1965年我国生物化学工作者采用人工合成方法,首次合成具有生物活性的蛋白质——结晶牛胰岛素,同时还采用 X线衍射方法成功地测定猪胰岛素分子的空间结构,分辨率达0.18nm。 Nirenberg等人经过5年多的努力于1966年终于破译了mRNA分子中的遗传密码,书写了最为激动人心的篇章。

3. 20世纪70年代重组DNA技术的建立,不仅促进了对基因表达调控机制的研究,而且使人们主动改造生物体成为可能。由此,相继获得了多种基因工程产品,大大推动了医药工业和农业的发展。 转基因动植物和基因剔除的成功是重组DNA技术发展的结果。基因诊断与基因治疗也是重组DNA技术在医学领域中应用的重要方面。 1981年我国生物化学工作者首次成功的合成了酵母丙氨酰tRNA。 核酶(ribozyme)的发现补充了对生物催化剂本质的认识。 聚合酶链反应(PCR)技术的发明,使体外高效扩增DNA成为可能。

4. 20世纪90年代开始实施的人类基因组计划 (human genome project,HGP)是生命科学领域 有史以来最庞大的全球性研究计划,旨在确定人 类基因组的全部序列。 进入21世纪后,随着人类基因组草图的公布, 将进一步深入研究各种基因的功能与调节。 近年来蛋白质组学、RNA组学等的研究迅速 兴起,这些研究结果必将进一步加深人们对生命 本质的认识,也将极大地推动医学的发展。

二、生物化学研究内容 (二)生物分子的结构与功能 植物生化、动物生化、微生物生化、医学生化* 水:55%~67% 蛋白质:15%~18% 脂类:10 %~15% 糖类:1%~2% 无机盐:3%~4% (一)人体的物质组成 (占体重) (二)生物分子的结构与功能 结构是功能的基础,而功能是结构的体现。生物大分子的功能可通过分子之间的相互识别和作用来实现,如蛋白质、核酸自身之间、蛋白质与核酸之间的相互作用在基因表达调节中起着决定性作用。目前这一领域的研究是生物化学的热点之一。

(三) 物质代谢及其调节 1. 生物体的基本特征是新陈代谢,人的一生中与外界环境进行交换的水大约为60000 kg、糖类10000 kg、蛋白质1600 kg、脂类1000 kg,其总量约高达人体重量的1300余倍。 2. 各种物质代谢途径之间存在着密切而复杂的关系,按照一定规律有条不紊地进行,需要神经、激素等整体性精确的调节来完成。 3. 物质代谢中的绝大部分化学反应由酶催化,酶结构和含量的变化起着重要调节作用。 4. 细胞信息传递参与多种物质代谢的调节,其机制及网络也是近代生物化学研究的重要课题。

(四) 基因信息传递及调控 蛋白质 转录 翻译 逆转录 DNA RNA 复制 1.基因信息传递涉及到遗传、变异、生长、分化等生命过程,与遗传性疾病、恶性肿瘤、代谢异常性疾病、免疫缺陷性疾病、心血管病等的发病机制有关。 2.随着基因工程技术的发展,许多基因工程产品将应用于疾病的诊断和治疗。进一步研究基因信息传递过程的机制及基因表达调控的规律(DNA重组、转基因、基因剔除、基因克隆、人类基因组计划及功能基因组计划)将大大推动这一领域的研究进程。

三、生物化学与医学 生物化学既是重要的医学基础学科,又与医学的发展密切相关相互促进。各种疾病发病机制的阐明,诊断手段、治疗方案、预防措施等的实施,都无一不依据生物化学的理论和技术。 (一)发病机制的阐明 1. 糖类代谢紊乱导致的糖尿病。 2. 脂类代谢紊乱导致的动脉粥样硬化。 3. 氨代谢异常与肝性脑病。 4. 胆色素代谢异常与黄疸。 5. 维生素缺乏与夜盲症和佝偻病。 6. 基因突变导致肿瘤和分子病。 7. 遗传性酶缺乏导致白化病、痛风等。 8. 蛋白质空间构象改变导致疯牛病。

4. 基因工程药物(如胰岛素)的研究开发应用。 (二) 疾病的诊断、治疗和预防 1. 体液中无机盐类、有机化合物和酶类等的检测诊断。 2. PCR技术和基因诊断检测技术的临床应用、法医学鉴定和流行病学调查。 3. 遗传病基因疗法、传染病基因疗法、肿瘤基因疗法和其他疾病基因疗法的完善和应用。 4. 基因工程药物(如胰岛素)的研究开发应用。 生物化学的发展必将对临床、预防、护理、影像、检验和药学等领域产生重大影响。只有扎实地掌握生物化学的基本理论和基本技能,才能有望成为合格的医务工作者。