脉冲核磁共振系列实验 李正 09300300083 何鑫 09300300084 指导老师:俞熹.

Slides:



Advertisements
Similar presentations
NMR 基础理论及解谱. 本次培训的目的 1 ,简要了解核磁共振的原理 2 ,简要熟悉核磁仪的工作原理 3 ,掌握一维谱图的几个重要信息,以及利用 这些信息进行简单谱图解析 4 ,二维谱图的简介及实例解析.
Advertisements

核磁共振成像实验 第A4组 谢 欣 同组: 陈苏迪.
分子生物学部分开发实验 植物遗传亲缘关系研究.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
§3.4 空间直线的方程.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
康普顿散射的偏振研究 姜云国 山东大学(威海) 合作者:常哲 , 林海南.
§17.1 原子核的一般性质 原子核的组成 原子核由核子组成。 质子(P): 核子 中子(n): 原子核符号
脉冲核磁共振实验 (06光科 冯文赫 ).
驰豫与核磁共振信号.
核磁共振成像简介1 姚红英.
不确定度的传递与合成 间接测量结果不确定度的评估
核磁共振成像实验 王哲雅 指导老师:俞熹.
Presenter: 宫曦雯 Partner: 彭佳君 Instructor:姚老师
Geophysical Laboratory
核磁共振成像原理 什么是核磁共振成像? 核磁共振的硬件 什么是核磁共振现象? 射频系统 梯度系统
第六章 自旋和角动量 复旦大学 苏汝铿.
NaI(TI)单晶伽马能谱仪实验验证 朱佩宇 2008年1月3日.
NMR基础知识简介.
脉冲核磁共振弛豫时间的测量 彭欢 指导老师 俞熹.
实验器材: NMI20Analyst 台式核磁共振成像仪
Μ子寿命测量 王纬臻 合作者 吴泽文 指导老师:乐永康.
第十章 方差分析.
实验六 积分器、微分器.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
工业机器人技术基础及应用 主讲人:顾老师
看一看,想一想.
第三单元 从微观结构看物质的多样性 同分异构现象.
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
第7讲 自旋与泡利原理.
检查自己的电脑是否已安装ACD/NMR processor, 没有请下载安装(默认设置)。
晶体管及其小信号放大 -单管共射电路的频率特性.
Three stability circuits analysis with TINA-TI
晶体管及其小信号放大 -单管共射电路的频率特性.
第9讲 原子光谱项.
12.1 红外光谱 Infrared Spectrum.
作业 P152 习题 复习:P 预习:P /5/2.
激光器的速率方程.
第15章 量子力学(quantum mechanics) 初步
第四章 磁共振 原子核 带正电荷的粒子 §4-1 核磁共振的基本原理 分子的磁性质 当它的质量数和原子序数有一个是奇数时,
§5.3 泡利原理和同科电子 一、确定电子状态的量子数 标志电子态的量子数有五个:n,l,s,ml,ms。
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
第4课时 绝对值.
无线网络特性展现 张琦.
第18 讲 配合物:晶体场理论.
核磁共振 Nuclear Magnetic Resonance-NMR
H核磁共振谱图解析举例 解析NMR谱: 共振信号的数目,位置,强度和裂分情况 信号的数目: 分子中有多少种不同类型的质子
静定结构位移计算 ——应用 主讲教师:戴萍.
第五章 核磁共振成像 外磁场中的原子核 —— 经典力学观点 生物医学图象处理 F 张琦.
2019/5/21 实验一 离散傅立叶变换的性质及应用 实验报告上传到“作业提交”。 11:21:44.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
§17.4 实物粒子的波粒二象性 一. 德布罗意假设(1924年) 波长 + ? 假设: 实物粒子具有 波粒二象性。 频率
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
带电粒子在匀强磁场中的运动 扬中市第二高级中学 田春林 2018年11月14日.
热力学与统计物理 金晓峰 复旦大学物理系 /7/27.
本底对汞原子第一激发能测量的影响 钱振宇
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第七章 核磁共振谱 共振(resonance)是指具有相同频率的两个振子所发生的强的有效偶合条件.
三角 三角 三角 函数 余弦函数的图象和性质.
位似.
§4.5 最大公因式的矩阵求法( Ⅱ ).
实验十八 图谱解析实验 根据谱图,推定未知苯系物的结构
红豆杉.
核磁共振成像 报告人:陈景莉、周兴 材料科学系 材料物理.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
第三章 图形的平移与旋转.
第八章 第二部分 PLC控制组态软件 综合仿真实验
核磁共振实验 采样参数对图像大小及形状的影响规律
Presentation transcript:

脉冲核磁共振系列实验 李正 09300300083 何鑫 09300300084 指导老师:俞熹

第一部分、基本原理——李正 第二部分、原理验证性实验——李正 第三部分、成像实验——何鑫

基本原理:当原子核跑到磁场中 带电核子自旋,产生了原子核的核磁矩。 在磁场中,在核磁矩和自旋的共同作用下,核磁矩绕着磁场方向进动,进动频率符合拉莫尔公示: 根据量子力学理论,原子核存在自旋角动量。原子核内的质子和中子是具有自旋1/2的粒子,它们在核内还具有相互运动,因而具有轨道角动量。所有核子的轨道角动量和自旋角动量的矢量和就是原子核的自旋。原子核的自旋角动量大小为: ,其中I为整数或半整数,称为核的自旋量子数。原子核自旋在空间给定z方向的投影PIZ为: ,其中mI叫磁量子数, 。 带电的核子自旋,产生了原子核的核磁矩。原子核的磁矩和自旋角动量的关系是: ,在z方向上, 。其中gI是原子核的g因子,mp是质子的质量,μN是核磁子,其值比电子玻尔磁子小三个数量级。 当核磁矩在磁场中时,磁矩与磁场间的相互作用能是.原子核分裂为2I+1个能级,核磁矩绕磁场方向进动。能级差 其中,被称为旋磁比。得出拉莫尔公式: , 代表核磁矩绕磁场进动的频率,称为拉莫尔频率。 其中, 被称为旋磁比 gI:原子核的g因子 mp:质子的质量 mI:磁量子数

基本原理:当原子核跑到磁场中 低能级mI=1/2 高能级mI=-1/2

基本原理:核磁共振现象 人为在垂直于外场Bz的方向上加上一个频率为 的射频磁场B1, 对于有大量微观磁矩组成的宏观物质,定义体核磁化强度M来描述原子核系统。M定义为单位体积内N个核磁矩的矢量和。 对于I=1/2的物质,能级分裂成两个子能级。其平衡时各能级上的粒子数服从玻尔兹曼统计分布,即,其中k=1.3805×10-23J/K。差别很小,宏观的体核磁化强度在z方向的分量必须为时,才能观察到核磁共振。 假如在垂直于外场Bz的方向上加上一个频率为的射频磁场B1,微观上,由选择定则,=1/2低能级中多出高能级的质子中,有一半吸收能量,向高能级跃迁,这样使得纵向的磁化强度减小;同时,由于的射频磁场B1使得横向磁化分量趋于同一相位,产生了一个旋转的横向磁化分量。宏观上,体现为M将会同时绕B1进动。

弛豫过程就是的射频磁场B1消失后,磁化矢量恢复到平衡状态的过程。 基本原理:弛豫 T1弛豫 定义:纵向磁化矢量从零恢复到最大值的1-1/e被所需时间 公式: 实质:自旋原子核将能量通过周围晶格释放到周围的物质中 弛豫过程就是的射频磁场B1消失后,磁化矢量恢复到平衡状态的过程。 T2弛豫 定义:横向磁化矢量从最大值减小到最大值1/e倍处时所需时间 公式: 实质:质子的横向进动相位逐渐失去一致性 弛豫过程实际就是的射频磁场B1消失后,磁化矢量恢复到平衡状态的过程。 T1弛豫 T1弛豫时间定义为纵向磁化矢量从零恢复到最大值的1-1/e被所需时间,符合公式。这种弛豫的实质是自旋原子核将能量通过周围晶格释放到周围的物质中,又称自旋-晶格弛豫。 T2弛豫 T2弛豫时间定义为横向磁化矢量从最大值减小到最大值1/e倍处时所需时间,遵从公式。其实质是质子的进动相位逐渐失去一致性,分子结构越均匀,散相时间越长,即T2越长。T2弛豫又称自旋-自旋弛豫。 考虑到磁场不均匀因素,可以引入,定义1/。其中表示物质的固有横向弛豫时间,而表示主磁场的不均匀性。 考虑到磁场不均匀因素,可以引入 ,定义 其中 表示主磁场的不均匀性。

基本原理:旋转坐标系 仪器在测量核磁共振信号时,测量的坐标系按照一定频率ω旋转。 作用:消除进动的影响 ω≠ω0 ω=ω0

基本原理:脉冲序列 所谓“脉冲序列”,就是射频磁场B1的变化波形。 90°脉冲:使纵向宏观磁化矢量偏转90° 180°脉冲:使纵向宏观磁化矢量翻转 硬脉冲: 90°脉冲:P1=45us 180°脉冲:P2=90us 时 域 频 域 傅里叶 变换 软脉冲: 90°脉冲: RFAmp1=37% 180°脉冲:RFAmp2=65.5%

第二部分、原理验证性实验

实验界面 TD:采集点数 SW:采样频率。图像X轴长度为TD/SW DFW:截止频率,大于此频率的信号将被屏蔽掉。 SF1:设置的坐标旋转频率 O1:频率微调 RG:放大倍数 NS:累加测量次数 DS:过采样倍数。实际采样点数为DS*TD。

实验一:测量拉莫尔频率 ω=ω0 =22.283812MHz

实验二:测量T2* 原理: 硬脉冲FID信号的衰减反映出横向弛豫过程。 T2* =1/0.4120.28=2.15ms 编号 1 2 3 4 6 7 8 峰值 111.1 96.7 79.0 63.0 51.8 43.2 36.3 31.2 时间 0.28 0.66 1.03 1.40 1.78 2.16 2.51 2.89 9 10 11 12 13 14 15 16 26.5 23.0 20.0 17.5 16.1 14.0 13.1 11.6 3.26 3.64 4.01 4.38 4.75 5.11 5.48 5.86

实验三:测量T2 原理:利用硬脉冲CPMG序列,消除磁场不均匀的影响 90°脉冲 质子散相 180 °脉冲 相位重聚

实验三:测量T2 回波编号 色散峰时间 色散峰幅值 吸收峰时间 吸收峰幅值 模峰 模峰的时间 1 3.36 2572.7 4.73 2450.5 3310.6 3.98 2 11.38 2397.5 12.73 2287.4 3051.8 11.99 3 19.39 2069.5 20.75 2055.3 2660 20.05 4 27.42 1929.05 28.79 1833.55 2457.8 28.06 5 35.43 1666.4 36.79 1657.74 2159.5 36.1 6 43.49 1570.41 44.82 1487.81 1986.8 44.12 7 51.47 1371.72 52.83 1347.6 1757.7 52.15 8 59.55 1284.5 60.89 1216.11 1617.4 60.15 9 67.52 1116.3 68.86 1116 1459.3 68.2 10 75.59 1057.7 76.93 1006.2 1343.1 76.2 根据色散峰的峰值和出现时间进行拟合,得y = 2693.9e-0.013x,R² = 0.9951 根据吸收峰的峰值和出现时间进行拟合,得y = 2640.5e-0.013x,R² = 0.9989 根据模峰的峰值和出现时间进行拟合,得y = 3480e-0.013x,R² = 0.998 T2 = =1/0.013=76.923ms

实验三:测量T2 软件自动拟合结果: T2 =76.923ms 与手动计算结果的误差来源于软件没有辨认出最后一个峰,只拟合了九个峰。

实验四:测量T1 原理: 180°脉冲作用下纵向磁化矢量翻转,然后进行弛豫。经过时间D1后,施加90°射频脉冲,测量产生的信号大小 原理:反转恢复序列如图4-2-1所示。180°脉冲作用下纵向磁化矢量翻转,然后进行弛豫。经过时间D1后,施加90°射频脉冲,测量产生的信号大小。这个信号大小反映了在D1时间内纵向弛豫进行到什么程度,如果多次改变D1的值,每次都记录下信号强度值,可以以D1为横坐标,信号强度为纵坐标,描绘出纵向弛豫过程曲线。根据公示,即可得到样品的T1值。 过程:试验中,将玉米油样品放入核磁共振谱仪。利用硬脉冲FID序列找到样品的90°和180°脉冲的宽度分别为46us和180us,中心频率SF1=22MHz,O1=283.72KHz。

实验四:测量T1 样品:玉米油 90°和180°脉冲宽度:P1=46us P2=180us 中心频率:SF1=22MHz,O1=283.72KHz

实验四:测量T1 根据公式: 利用软件“T1拟合”功能,得出: T1 =76.0ms

实验五:测量乙醇的化学位移 原理: 由于原子核受到电子云的屏蔽,其受到的磁场作用实际为 其中σ是屏蔽系数。根据公式 ,可见不同化学环境下的质子拉莫尔频率也不同。 乙醇分子中有三种不同环境下的氢原子核 由于原子核受到电子云的屏蔽,其受到的磁场作用实际为,其中是屏蔽系数,与原子核所处的化学环境有关,化学环境不同的原子核,其屏蔽系数不同,,可知其中心频率也不同。测量出某种样品的脉冲核磁共振谱图,经过傅里叶变换后,可以看出,此样品中的氢原子处于几种化学环境下,频域的傅里叶图中就应该有几个峰;而且峰值应该与对应化学环境下的元素含量成正比。 乙醇分子中有三种不同环境下的氢原子核,因此其核磁共振谱图经过傅里叶变换后应该产生3个频率不同的峰值。其理想谱图如图3-3-1所示: 从图中可见,其1、2号峰的距离约为2ppm,2、3号峰的距离约为3ppm。 实验测得的谱图如图4-3-2所示: 可以看出,各个峰值被严重展宽。但是进过多次测量,每次的结果都是一个类似的图谱。可以确定这个峰值的分裂是由于乙醇中氢核所处化学环境不同造成的。如果把图中三个转折点看做1、2、3号峰的话,则1、2号峰间距3.2ppm,2、3号峰间距2.1ppm。 化学位移值的展宽主要由磁场决定。经过长时间的电子匀场,最后发现当GX=57,GY=61,GZ=60.5的时候,主磁场最为均匀。图4-3-3显示了磁场的均匀性最大只能达到10ppm左右。 结论:1、图4-3-2中的峰值分裂是由于乙醇分子中氢核所处的化学环境不同造成的。2、因为主磁场均匀度只有10ppm,所以不可能分辨出距离只有2~3ppm的分裂峰。因此图4-3-2中所示的峰值不是乙醇的化学位移峰。本仪器在只进行电子匀场的情况下无法测量乙醇的化学位移。

实验五:测量乙醇的化学位移 经过调匀,当GX=57,GY=61,GZ=60.5时,磁场达到最大的均匀性只能达到10ppm。 结论: 1、因为实验结果重复性较强,所以图中的峰值分裂是由于乙醇分子中氢核所处的化学环境不同造成的。 2、因为主磁场均匀度只有10ppm,所以没法分辨出距离只有2~3ppm的分裂峰。

第三部分、成像实验

像素的位置 像素的灰度 成像原理 不同磁场下的质子拉莫尔频率不同,可以选择性的激发某层的质子。 进行核磁共振成像,有两个参数:像素的位置和像素的灰度。 要确定像素的位置,可以在XYZ方向分别设置梯度磁场,如图5-1-1所示。由处于不同磁场下的质子进动速度不同,可以选择性的激发某层的质子。在施加三维梯度场后,理论上每个质子都有不同的拉莫尔频率。 这是再施加特定的脉冲序列的射频场,就可以获得某个特定位置的质子的自旋回波信号图像。将此图像由时域变换到频域,根据其在频域峰值的大小,即可获得其灰度信息。同时,频率的大小对应了质子的位置。 用特定频率的脉冲序列,可以获得特定位置的质子的自旋回波信号。根据信号在频域峰值的大小,即可获得其灰度信息。

自旋回波序列成像 实验参数: 90°和180°软脉冲强度: RAFmp1=37.7%,RAFmp2=65.5% 中心频率: SF1=22MHz O1=283.382KHz D0=300us SP1=SP2=1200us D1=2000us D2=500us D3=D4=D5=100us GxAmp=45% GyAmp=20% GzAmp=50% SLICE=0

自旋回波序列成像 实验参数: 90°和180°软脉冲强度: RAFmp1=37.7%,RAFmp2=65.5% 中心频率: SF1=22MHz O1=283.382KHz D0=300us SP1=SP2=1200us D1=2000us D2=500us D3=D4=D5=100us GxAmp=50% GyAmp=80% GzAmp=50% SLICE=0

自旋回波序列成像 实验参数: 90°和180°软脉冲强度: RAFmp1=37.7%,RAFmp2=65.5% 中心频率: SF1=22MHz O1=283.382KHz D0=300us SP1=SP2=1200us D1=2000us D2=500us D3=D4=D5=100us GxAmp=50% GyAmp=50% GzAmp=80% SLICE=1

谢谢大家!