问:图中∠α与∠β的度数之间有怎样的关系?

Slides:



Advertisements
Similar presentations
初高中数学的衔接 数学竞赛辅导 杂谈 龙泉一中 王振炼 一、关于高中数学课程框架 二、初高中数学衔接内容 三、关于数学竞赛的辅导 四、龙一中的初一、 初二的竞赛 五、龙一中高一重点班提前招生 六、一位神奇的数学老师.
Advertisements

6.1.2平面直角坐标系(1) 丹江口市三官殿中学 刘正鸿.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
余角、补角.
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
直线和圆的位置关系.
八年级下数学课题学习 格点多边形的面积计算 数格点 算面积.
角的分类 角的分类 执教者 : 彭青荣 城关镇希望小学:白海珍.
课前探究: 给定一个角 , 角 的终边与角 的终边有什么关系?它们的三角函数之间有什么关系?
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
19.3 梯形(第1课时) 等腰梯形.
2.1.2空间中直线与直线之间的位置关系 设计与制作 铜陵市第三中学数学组 胡春林
浙教版九(上)§第 三章第五节 3.5 圆周角(2) 学科网 学科网.
八年级 上册 11.2 与三角形有关的角 (第2课时).
第十一章 三角形 三角形的内角(第2课时) 湖北省咸宁市咸安区教育局教研室 王格林.
9.7 直线和平面所成的角与二面角 1. 平 面 的 斜 线 和 平 面 所 成 的 角 X.
三角形的内角.
本节内容 平行线的性质 4.3.
知识回顾: 1. 平行四边形具有哪些性质? 平行四边形的性质: 1、边:平行四边形对边平行且相等。 2、角:平行四边形对角相等,邻角互补。
解直角三角形复习课 (一) A B b a c ┏ C.
28.1 锐角三角函数(2) ——余弦、正切.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
6.4不等式的解法举例(1) 2019年4月17日星期三.
§ 矩形的定义、性质 矩形 本资料来自于资源最齐全的21世纪教育网
正方形 ——计成保.
相交线中的角 无锡市长安中学 顾志伟.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
如果你想学会游泳,你必须下水; 如果想成为解题能手,你必须解题. ——波利亚.
5.4一元一次方程的应用(2).
二面角 欧 进 兰 平面内的一条直线,把这个平面分成两部分,每 一部分都叫做半平面。 半平面及二面角的定义 1、半平面: 平面内的一条直线,把这个平面分成两部分,每 一部分都叫做半平面。 2、二面角: 从一条直线引出的两个半平面所组成的图形叫做 二面角。这条直线叫做二面角的棱,这两个半平.
等腰三角形复习.
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
4.2 相似三角形.
3.4 圆心角(1).
10.3平行线的性质 合肥38中学 甄元对.
平行线的性质 1.
复习.
2.6 直角三角形(1).
平行线的判定 1.
第二章 平行线与相交线 锦州市实验学校 数学组(3).
第三单元:角的度量 线段 直线 射线 北京市东城区府学胡同小学 胡益萌.
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
夹角 曾伟波 江门江海中学.
5.3.2 命题、定理.
第五章 相交线与平行线 平行线的判定 (第2课时)
(人教版) 数学八年级上册 12.3 等腰三角形(1) 磐石市实验中学.
18.2 特殊的平行四边形 矩形(1).
初中数学 八年级(上册) 2.5 等腰三角形的轴对称性⑴ 扬中市第一中学
§1.2.4 平面与平面的位置关系(一) 高三数学组 李 蕾.
空间平面与平面的 位置关系.
3.4圆周角(一).
平行四边形的性质 鄢陵县彭店一中 赵二歌.
4.3 相似多边形.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
6.3正方形. 6.3正方形 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。 1. 正方形的定义 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
24.4弧长和扇形面积 圆锥的侧面积和全面积.
第 五 章 相交线与平行线复习 制作:LXL.
锐角三角函数(1) ——正 弦.
26.3 实际问题与二次函数(1)
3.4 角的比较.
位似.
三角形的内角 淄博十五中 孟庆云.
第19章 四边形 小结和复习.
4.2 同角三角函数的基本关系 及诱导公式.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
§2.3.2 平面与平面垂直的判定.
Presentation transcript:

问:图中∠α与∠β的度数之间有怎样的关系? 观察与思考 α β 问:图中∠α与∠β的度数之间有怎样的关系? ∠α+∠β=90°, 即∠α与∠β互为余角, ∠α的余角是∠β, ∠β的余角是∠α. 1.如果两个角的和是一个直角, 那么这两个角互为余角,简称互余. www.czsx.com.cn 其中的一个角叫做另一个角的余角.

观察与思考 问:图中∠α与∠β的度数之间有怎样的关系? ∠α+∠β=90° 即:∠α与∠β互为余角 ∠α的余角是∠β, ∠β的余角是∠α. 定义:如果两个角的和是一个直角 如果两个角的和是一个直角 那么这两个角互为余角,简称互余. 其中的一个角叫做另一个角的余角. 定义: 相城实验中学 沈娟

知识总结: 互为余角 互为补角 图形 数量关系 性 质 ∠1+∠2=90° ∠1+∠2=180° 同角(或等角)的余角相等 性 质 1 2 1 2 ∠1+∠2=90° ∠1+∠2=180° 同角(或等角)的余角相等 同角(或等角)的补角相等

知识总结 互为余角 互为补角 图 形 数量关系 性 质 ∠1+∠2=90° ∠1+∠2=180° 同角(或等角)的余角相等 图 形 数量关系 性 质 1 2 1 2 ∠1+∠2=90° ∠1+∠2=180° 同角(或等角)的余角相等 同角(或等角)的补角相等 相城实验中学 沈娟