深層學習 暑期訓練 (2017).

Slides:



Advertisements
Similar presentations
广州市教育局教学研究室英语科 Module 1 Unit 2 Reading STANDARD ENGLISH AND DIALECTS.
Advertisements

Which TV program is the video? 中国达人秀 China’s Got Talent 选秀节目 talent show talent n. 天资;天赋.
碧桂园集团开启全球人才招募之旅. 这里是社会精英云集的公司 这里是人才施展才华的好地方 这里是学习进步的好学校 这里是和谐的大家庭 这里是诚实守信、合法合规经营的公司 这里是讲道理、勇于自我修正的公司 这里是公平公正、论功行赏的公司 这里是欣欣向荣、不断总结好经验并付诸实践的公司 这里是为全世界建造又好又便宜的房子的公司.
IELTS ACADEMIC WRITING.
信息技术在教学中的应用 信息技术应用于教学的整体观、系统观 信息技术应用于教学的整体观、系统观 对信息技术整合的理解——教师的视角
Section B Period Two.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
Unsupervised feature learning: autoencoders
2014年11月12日: 日程 中国学生的采访 Model 考试 复习:怎么提高文章水平? 大学面试:六个问题.
专题八 书面表达.
当代中国流行文化与对外汉语教学 Contemporary Chinese Popular Culture and Teaching Chinese as a Foreign Language Yuhong Sun 孙玉红.
学习者自主与教材建构 以《综合教程》为例 学习者自主与教材建构 以《综合教程》为例 华中师范大学 杨虹.
資料採礦與商業智慧 第四章 類神經網路-Neural Net.
How can we become good leamers
Chapter 29 English Learning Strategy Of High School Students
真题重现:广东高考中的不定式。 1 (2008年高考题)For example, the proverb,“ plucking up a crop _________(help) it grow ,” is based on the following story… 2 (2007年高考题)While.
SHARE with YOU Why am I here? (堅持……) What did I do?
unit4 My Holiday (人教pep)英语课件六年级下册 unit4
Welcome Welcome to my class Welcome to my class!.
MovieBot: Booking Tickets Easily
Visualizing and Understanding Neural Machine Translation
Unit 1 How Tall Are You? 第六课时 绿色圃中小学教育网
Unit 3 Families Celebrate Together Lesson 22 Presents from Canada!
Unit title: 嗨!Hi! Introducing yourself in Chinese
Do you want to watch a game show?
Unit title: 嗨!Hi! Introducing yourself in Chinese
Source: IEEE Access, vol. 5, pp , October 2017
Lecture 2 Lecture An Introduction To The HTML Language
顏色yán sè COLORS 紅色 藍色 綠色 黃色 紫色 白色 黑色 咖啡色 bái sè hēi sè hóng sè lǜ sè
Write a letter in a proper format
迎接108新挑戰: 英語文領域素養導向的 多元選修課程設計
1 Introduction Prof. Lin-Shan Lee.
Unit 4 My day Reading (2) It’s time for class.
Cross cultural communication in college english
Advanced Artificial Intelligence
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
This Is English 3 双向视频文稿.
《神经网络与深度学习》 线性模型
Lesson 28 How Do I Learn English?
Lesson 44:Popular Sayings
Try to write He Mengling Daqu Middle School.
外事英语 主讲:陈蔼琦 2019/2/17.
Unit title: 假期 – Holiday
基于课程标准的校本课程教学研究 乐清中学 赵海霞.
服務於中國研究的網絡基礎設施 A Cyberinfrastructure for Historical China Studies
英语教学课件 九年级全.
Area of interaction focus
1 Introduction Prof. Lin-Shan Lee.
如何增加对欧贸易出口 中国制造展销中心(英国)有限公司 首席执行官 理查德·赛斯
資料結構 Data Structures Fall 2006, 95學年第一學期 Instructor : 陳宗正.
BORROWING SUBTRACTION WITHIN 20
True friendship is like sound health;
Presentation 约翰316演示 John 3 : 16
Module 4 Unit 1 This is my head..
Area of interaction focus
TEEN CHALLENGE Next Steps 核心价值观总结 CORE VALUES 青年挑战核心价值观
冀教版 九年级 Lesson 20: Say It in Five.
李宏毅專題 Track A, B, C 的時間、地點開學前通知
M; Well, let me check again with Jane
Introduction of this course
完形填空的解题技巧 禹州高中 胡晓芳.
More About Auto-encoder
Speaker : YI-CHENG HUNG
人工智慧&Scratch 林俞均 侯藹玲 陳芸儀 鄭涵庭
991 中大英語自學小組 English Study Group
英语口译 4 Education and Campus 大学英语教学部 向丁丁.
My favorite subject science.
WiFi is a powerful sensing medium
Gaussian Process Ruohua Shi Meeting
《神经网络与深度学习》 第10章 模型独立的学习方式
Presentation transcript:

深層學習 暑期訓練 (2017)

助教 大助教: 萬家宏 作業一: 許宗嫄 作業二: 陳奕禎 作業三: 蔡哲平  作業四: 萬家宏 作業五: 黃淞楓  作業問題在社團上討論

作業繳交 五個作業 因為是暑假,所以並不強迫繳交 請加入 FB 社團「深度學習暑期訓練」 等一下會講作業大概的內容 都很簡單 作業詳細內容和做法都已經公告在社團上 會使用 keras 這套工具 (歡迎自學 Tensorflow ) 教材:李宏毅教授在台大計中的十二小時演講錄影 內容公告於社團上

工作站 專題工作站的 IP 是 140.112.21.80 密碼統一是 speech,再自行修改密碼 在以下 google doc 登記(8/3 23:59截止) https://docs.google.com/forms/d/1- J6rbxFMN2yBNUnApgJYxvjM7v- brbiiVqucNGhOsnY/viewform?edit_requested=tr ue 如果每組自己有 linux 系統會比較快樂 如果每組自己有 GPU 會更快樂

機器學習

Machine Learning You said “Hello” Learning ...... “Hi” “How are you” “Good bye” You write the program for learning. A large amount of audio data

Machine Learning This is “cat” Learning ...... “monkey” “cat” “dog” You write the program for learning. A large amount of images

Machine Learning ≈ Looking for a Function Speech Recognition Image Recognition Playing Go Dialogue System “How are you” “Cat” “5-5” (next move) “Hi” “Hello” (what the user said) (system response)

Framework Model Image Recognition: “cat” A set of function “cat” “money” Repeat again “dot” “snake”

Framework Model Supervised Learning Image Recognition: “cat” A set of function Model Better! Goodness of function f Repeat again Supervised Learning Training Data function input: function output: “monkey” “cat” “dog”

Pick the “Best” Function Image Recognition: Framework “cat” A set of function Neural Network Training Testing Model “cat” Step 1 Goodness of function f Using Pick the “Best” Function Repeat again Step 2 Step 3 Training Data “monkey” “cat” “dog”

Deep means many hidden layers Neural Network neuron Input Layer 1 …… Layer 2 …… Layer L …… Output …… y1 …… y2 …… …… You can connect the neurons by other ways you like  How many layer is deep? CNN just another way to connect the neuros. You can always connect the neurons in your own way. “+” is ignored Each dimension corresponds to a digit (10 dimension is needed) …… yM Input Layer Output Layer Hidden Layers Deep means many hidden layers

作業說明

作業一 作業說明(Lecture 1~5) Task 1 “5” “0” “4” “1” basic:higher than a specific accuracy (98.0%) option:analyze the output of each layer

作業一 Task 2 Network 政治 體育 政治 財經 http://top-breaking-news.com/ 體育 政治 財經 basic:higher than a specific accuracy (78.0%) option:analyze the output of each layer

作業一 More reference: Example code of task 1: https://github.com/fchollet/keras/blob/master/example s/mnist_mlp.py Example code of task 2: https://github.com/fchollet/keras/blob/master/example s/reuters_mlp.py Neural Networks and Deep Learning http://neuralnetworksanddeeplearning.com/ Chapter 1 - 3

作業二 作業說明(Lecture 6) Image Recognition Network “monkey” “monkey” “cat” “dog” “dog”

作業二 Basic:higher than a specific accuracy (81.0%) option:analyze the functionality of “filter” More Reference: Example code: https://github.com/fchollet/keras/blob/master/example s/cifar10_cnn.py http://cs231n.github.io/convolutional-networks/ Neural Networks and Deep Learning (Chapter 6)

作業三 作業說明、Corpus(Lecture 7, 9) Machine learns human language Machine writes documents The life is ……. You do not have to teach machine grammars ……. Basic: Let machine generate an English sentence Option: Let machine generate a Chinese sentence

作業三 Machine learns human language More reference Example code: https://github.com/fchollet/keras/blob/master/ examples/lstm_text_generation.py http://karpathy.github.io/2015/05/21/rnn- effectiveness/ http://colah.github.io/posts/2015-08- Understanding-LSTMs/

作業四 作業說明(Lecture 8) Auto-encoder: unsupervised learning NN Encoder Basic: visualize the “code”. Does different digits represent by different “code”? NN Decoder code Option: Given a “code”, can machine write a digit?

作業四 Auto-encoder: unsupervised learning More reference: https://blog.keras.io/building-autoencoders-in- keras.html Advanced: Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114 Generative Adversarial Networks, http://arxiv.org/abs/1406.2661 Replacing “digits” with “images”

作業五 Anime Face Generation 復旦大學 作業說明(何之源的知乎): https://zhuanlan.zhihu.com/p/24767059 DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

The evolution of generation NN Generator v1 NN Generator v2 NN Generator v3 Discri-minator v1 Discri-minator v2 Discri-minator v3 Binary Classifier Real images: Using a discriminator to help training the generator

Basic Idea of GAN Normal Distribution NN Generator v1 Step 1 1 1 1 1 Step 1 1 1 1 1 Discri-minator v1 image Optimizing the Discriminator by minimizing the loss of discriminator. 1/0

Basic Idea of GAN Normal Distribution NN Generator Next step: v1 Updating the generator by minimizing the JS divergence between the two images but fixing the discriminator. v2 The output be classified as “real” (as close to 1 as possible) Discri-minator v1 Generator + Discriminator = a network 1.0 0.13

Anime Face Generation 100 updates

Anime Face Generation 1000 updates

Anime Face Generation 2000 updates

Anime Face Generation 5000 updates

Anime Face Generation 10,000 updates

Anime Face Generation 20,000 updates

Anime Face Generation 50,000 updates

Have Fun! 