Validate antibacterial mode and find main bioactive components of traditional Chinese medicine Aquilegia oxysepala 生物系 任理
Abstract—Traditional Chinese medicines have been used for thousands of years and are still being used as one of the regular treatments for many diseases. However, their mechanisms were still unknown. In this investigation, a possible procedure combining metabonomics and principal component analysis to investigate antibacterial modes of action and find main antimicrobial component in traditional Chinese medicine, Aquilegia oxysepala, is developed. Metabolic profiles of Staphylococcus aureus treated with nine antibiotics of known modes of action and with A. oxysepala were acquired by HPLC/DAD/ESI-MS. After statistical processing by principal components analysis on metabolic profiles, two conclusions could be drawn: (1) the target of A. oxysepala may be similar to that of lincolmensin, erythromycin, chloromycetin, streptomycin, and acheomycin, whose targets are protein; (2) its bioactive component playing main antimicrobial roles on S. aureus may be maguoflorine.
摘要:中药已经使用了数千年,并且作为疾病的常用治疗药之一仍然被使用。然而,它们的机制依然不清楚。在这里,我们对综合运用代谢组学和主成分分析(PCA)研究中药Aquilegia oxysepala的抗菌作用机制并寻找其主要抗菌成分的可能方法进行研究。用九种作用机制已知的抗生素和A. oxysepala处理Staphylococcus aureus后,用HPLC/DAD/ESI-MS方法得到它的代谢作用图。用PCA对代谢图作统计处理后,可以得到两个结论:(1)A. oxysepala的作用靶点可能与lincolmensin, erythromycin, chloromycetin, streptomycin, and acheomycin的相似,均为蛋白质;(2)对S. aureus起主要抗菌作用的生物活性成分可能是木兰花碱maguoflorine。
Aquilegia oxysepala,毛茛科植物Ranunculus L Aquilegia oxysepala,毛茛科植物Ranunculus L.的一种,所含的主要化合物包括芫花素genkwanin、芹菜素apigenin、木兰花碱maguoflorine和黄连素berberine (Fig. 1)。民间医药使用的经验表明,它对妇科疾病如月经不调、子宫出血等疗效显著。单一中药中成分非常复杂,而且有些成分无法确定。中药中的成分很难被分离、鉴别和纯化。有关中药的许多分析方法已经确定,但是只有很少的成分能被分离和纯化。这些都对中药机制及其主要抗菌成分的确定造成极大阻碍。此外,细胞中有许多物质,比如蛋白质、核酸、小分子代谢物等。所以与研究成分的分离相比,人们更愿意寻找药物的作用位点。这些都对制药工业和农用化学品工业提出了挑战。本文旨在从另一角度解决这一问题。代谢组学和PCA的联合使用已用于验证可能的抗菌机制,并用于寻找中药的抗菌成分。
Figure 1. The structural formulae of genkwanin, apigenin, maguoflorine, and berberine.
Figure 2. HPLC profile (detection method: DAD-UV, 254 nm) of Aquilegia oxysepala.
我们选择Staphylococcus aureus作为研究对象,不仅因为它是一种典型的革兰氏阳性菌,还因为它是一种常见的治病菌。Aquilegia oxysepala和它的主要化学成分(genkwanin, apigenin, maguoflorine, and berberine) (see Figs. 1 and 2)以及九种作用机制已知的抗生素被加入到培养液中,培养24小时之后收集培养液,萃取细胞内代谢物并用HPLC/DAD/ESI-MS进行分析。然后用PCA处理得到的代谢作用图。运用这种方法,我们旨在研究中药的抗菌机制以及寻找中药中针对S. aureus的抗菌成分。
图3描述了空白对照、以及用利福平rifampicin和诺氟沙星Norfloxacin处理过的培养液的高效液相色谱图的有效部分。可以看出代谢作用图之间具有显著差异,因此就能根据各个图对药物进行分类。这也为用PCA区分代谢作用图和找出中药可能的作用机制提供了依据。
Figure 3. Typical HPLC profiles (detection method: DAD-UV, 254 nm) of controls at retention time 0–12.3 min (a1) and 99.0–120.0 min (b1), cultures treated with rifampicin at retention time 0–12.3 min (a2) and 99.0–120 min (b2), and cultures treated with norfloxacin at retention time 0–12.3 min (a3) and 99.0–120.0 min (b3).
进行多变量分析之前,必须对获得的数据进行两步预处理。首先,数据来自LC/DAD/MS,我们能从用这些数据构成的峰轨迹图中获取光谱信息。每个样品中组分的光谱信息被用来检验一个样品中的某一成分是否与另一样品中的一致。将保留时间的修正值转化为HPLC–UV 和HPLC–MS之后的色谱和包含有保留时间、质荷比以及峰面积的表格可以作为增补信息。两步预处理之后,用PCA绘制矩阵,该矩阵由所有样品在选取的保留时间内(0–12.3 and 99.0–120.0 min)(Fig. 4)色谱最有用的峰群组成。这些样品包括用A. oxysepala,和标准品(such as genkwanin, apigenin, maguoflorine, and berberine, nine antibiotics)处理过的培养液以及空白对照。
从图4中可以清楚看到用不同药物处理的培养液能与空白对照很好地分离。在两种浓度下抗生素都能按照它们的作用机制恰到好处地聚集在一起。头孢氨噻肟Cefataxime的作用靶点是转肽酶和糖肽酶,基于它独特的作用机制,在两种浓度下它都能与其他抗生素很好的分离。同样的,作用于细胞壁肽聚糖的万古霉素vancomycin也能单独分离出来。作用于相同位点的各种药物它们的相似性也能在图中显著表现出来。Acheomycin ,lincolmensin ,erythromycin, chloromycetin 和streptomycin 聚集在一起。从表1中我们知道,lincolmensin, erythromycin, 和chloromycetin作用于50S核糖体亚基,streptomycin和 acheomycin 作用于30S核糖体亚基,它们都抑制蛋白质的合成。此外,rifampicin 和norfloxacin的点也聚集在一起,它们对RNA聚合酶、旋转酶以及拓扑异构酶IV起作用。 Although no two drugs produced exactly the same pattern of loadings, the classification of all drugs and controls in Figure 4 is very clear. This may provide the basis to classify the metabolic profiles by PCA and to find out the possible mode of action of TCM.
Berberine, genkwanin, apigenin, rifampicin和norfloxacin的点聚集成群,这说明berberine, genkwanin和apigenin 也可能作用于核酸。 The PCA results supported the hypothesis that modes of actions of a drug could be identified by the metabolic profiles acquired. Maguoflorine 和A. oxysepala 与acheomycin, lincolmensin, erythromycin, chloromycetin 和streptomycin 聚集在一起, As we known from Table 1, lincolmensin, erythromycin, and chloromycetin have effects on 50S ribosomal subunit, streptomycin and acheomycin act on 30S ribosomal subunit. In a word, the mode of action of those five drugs is to inhibit protein synthesis. This may imply that the target of maguoflorine and A.oxysepala on S. aureus is possibly similar to that of lincolmensin, erythromycin, chloromycetin, streptomycin, and acheomycin, whose targets are protein.
中药的主要抗菌成分应该对靶点起主要作用,也就是说即使其他化学组分也能抑制S 中药的主要抗菌成分应该对靶点起主要作用,也就是说即使其他化学组分也能抑制S. aureus的生长,这一生物活性物质的机制也会与整个药物的机制一致。所以我们可以认为A. oxysepala中针对S. aureus 的主要物质是木兰花碱maguoflorine.
这种方法在初步研究中药的抗菌作用机制以及主要抗菌成分时是可行的。虽然这种方法还不够成熟,但是用这种方法获得的结果也许能为研究化合物的作用机制提供借鉴。