What are samples?. Chapter 6 Introduction to Inferential Statistics Sampling and Sampling Designs.

Slides:



Advertisements
Similar presentations
高考英语阅读分析 —— 七选五. 题型解读: 试题模式: 给出一篇缺少 5 个句子的文章, 对应有七个选项,要求同学们根据文章结构、 内容,选出正确的句子,填入相应的空白处。 考查重点: 主要考查考生对文章的整体内容 和结构以及上下文逻辑意义的理解和掌握。 (考试说明) 选项特点: 主旨概括句(文章整体内容)
Advertisements

期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
Sampling 抽樣 中央大學. 資訊管理系 范錚強 mailto: updated 11.
考研英语复试 口语准备 考研英语口语复试. 考研英语复试 口语准备 服装 谦虚、微笑、自信 态度积极 乐观沉稳.
Survey Sampling 問卷調查和訪談
2014 年上学期 湖南长郡卫星远程学校 制作 13 Getting news from the Internet.
2012 年下学期 湖南长郡卫星远程学校 制作 13 Unit 4 The next step 年下学期 湖南长郡卫星远程学校 制作 13 Discussion Which university do you want to study at? Have you thought carefully.
How can we become good leamers
統計調查管理研習班 統計調查抽樣設計 鄭宇庭 國立政治大學統計學系.
饮食治疗篇.
医学统计学 Medical Statistics.
2012高考英语书面表达精品课件:话题作文6 计划与愿望.
探討強迫症患者之焦慮、憂鬱症狀與自殺意念之相關
第一章、統計的基本概念 國立高雄餐旅大學 沈瑞棋副教授.
第三章 隨機變數.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
假設檢定.
Operating System CPU Scheduing - 3 Monday, August 11, 2008.
What do you think of game shows?
Ⅱ、从方框里选择合适的单词填空,使句子完整通顺。 [ size beef special large yet ]
Mini-SONG & Site testing at Delingha
Population proportion and sample proportion
模式识别 Pattern Recognition
大眾媒體研究導論 Chapter 4 抽樣 第一部分 研究程序
第 7 章 抽樣與抽樣分配 Part B ( ).
Area of interaction focus
Sampling Theory and Some Important Sampling Distributions
Digital Terrain Modeling
创建型设计模式.
第11章 抽樣設計 本章的學習主題 1.抽樣的基本概念 2.抽樣的程序 3.機率抽樣 4.非機率抽樣 5.電話抽樣
Unit 4 My day Reading (2) It’s time for class.
Unit 5 Why do you like pandas?
971研究方法課程第九次上課 認識、理解及選擇一項適當的研究策略
調查訪問講授大綱 東吳大學政治學系 黃秀端 教授.
This Is English 3 双向视频文稿.
Chapter 7 Sampling and Sampling Distributions
護理研究概論─ 樣本與取樣策略 許翠華 長庚科技大學 護理系 T.H. Hsu.
Interval Estimation區間估計
Unit 13 Lottery Fever.
Workshop on Statistical Analysis
基于课程标准的校本课程教学研究 乐清中学 赵海霞.
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
Unit 8 Our Clothes Topic1 What a nice coat! Section D 赤峰市翁牛特旗梧桐花中学 赵亚平.
Introduction to Basic Statistics
抽樣分配 Sampling Distributions
相關統計觀念復習 Review II.
BORROWING SUBTRACTION WITHIN 20
第七章 抽樣與抽樣分配.
Introduction to Basic Statistics
Review 統 計 方 法 的 順 序 確定目的 蒐集資料 整理資料 分析資料 推論資料 (變量,對象) (方法:普查,抽樣)
Area of interaction focus
抽样理论 与 参数估计 主讲人:孟迎芳.
The Bernoulli Distribution
高考应试作文写作训练 5. 正反观点对比.
Unit title: 学校 School Area of interaction focus Significant concepts
Statistics Chapter 1 Introduction Instructor: Yanzhi Wang.
Review of Statistics.
医学统计学 (Medical Statistics)
名词从句(2).
定语从句中 as的用法辨析.
More About Auto-encoder
品質管理與實習 : MIL-STD-105E 何正斌 國立屏東科技大學工業管理學系.
國立東華大學課程設計與潛能開發學系張德勝
何正斌 博士 國立屏東科技大學工業管理研究所 教授
怎樣把同一評估 給與在不同班級的學生 How to administer the Same assessment to students from Different classes and groups.
Class imbalance in Classification
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
抽樣分配.
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

Chapter 6 Introduction to Inferential Statistics Sampling and Sampling Designs

What are samples?

Sampling  抽樣 σ2 Ѕ2 Generalization 推論 Population Sample 母體 樣本 Parameter 參數 Statistic 統計量

誤差 Differences between parameters and statistics=error sampling error 抽樣誤差 non-sampling error 非抽樣誤差 (also called measurement error)

Sampling error the degree to which a given sample differs from the population sampling error tends to be high with small sample sizes and will decrease as sample size increases

Target Population group to which you wish to generalize the results of the study should be defined as specifically as possible

sampling frame population sample

Sampling Techniques Nonprobability Sampling (nonrandom sampling) 非隨機抽樣 Probability Sampling (random sampling) 隨機抽樣

Nonprobability sampling Convenience sampling 方便抽樣 getting people who are most conveniently available fast & low cost Volunteers 自願樣本 units are self-selected

Characteristics of nonprobability samples members of the population DO NOT have an equal chance of being selected results cannot be generalized beyond the group being tested

Probability Sampling sample should represent the population using random selection methods

Types of Probability Sampling Simple random sampling簡單隨機抽樣 Systematic sampling系統式抽樣 Stratified sampling 分層隨機抽樣 Cluster sampling 部落抽樣

Simple Random Sampling every unit in the population has an equal and known probability of being selected as part of the sample (抽籤) e.g. in obtaining a sample of 10 subjects from a population of 1,000 people, everyone in the population would have a 1/100 chance of being selected (or p of .01)

亂數表 1 2 3 4 5 6 7 8 9 10 49486 93775 88744 80091 92732 38532 41506 54131 44804 43637 94860 36746 04571 13150 65383 44616 97170 25057 02212 41930 10169 95685 47585 53247 60900 20097 97962 04267 29283 07550 12018 45351 15671 23026 55344 54654 73717 97666 00730 89083 45611 71585 61487 87434 07498 60596 36255 82880 84381 30433 89137 30984 18842 69619 53872 95200 76474 67528 14870 59628 94541 12057 30771 19598 96069 10399 50649 41909 09994 75322 89920 28843 87599 30181 26839 02162 56676 39342 95045 60146 32472 32796 15255 39636 90819 54150 24064 50514 15194 41450 63958 47944 82888 66709 66525 67616 75709 56879 29649 07325

Characteristics of simple random sampling Unbiased: 母體內每一個體被抽到的機會均等 Independence : 母體內某一個個體被抽到不會影響其他個體被抽到的機會

Limitations of simple random samples not practical for large populations Simple random sampling becomes difficult when we dont have a list of the population

Systematic Sampling系統性抽樣 a type of probability sampling in which every kth member of the population is selected k=N/n N = size of the population n = sample size

For example: You want to obtain a sample of 200 from a population of 10,000. You would select every 50th (or kth) person from the list. k = 10000/200=50

Advantages/disadvantages of systematic sampling Assuming availability of a list of population members Randomness of the sample depends on randomness of the list periodicity bias: 當母體個體排序出現某一週期性或規則時, systematic sampling 會有週期性誤差(periodicity bias)

Stratified Random Sample分層隨機抽樣 Prior to random sampling, the population is divided into subgroups, called strata, e.g., gender, ethnic groups, professions, etc.依母體特性將個體分層(Strata) & 每一個體只屬一層 Subjects are then randomly selected from each strata再從每一層中隨機抽取樣本(using simple random sampling)

第一層 第二層 第三層 . 第K層 Sample

Should select variables that are related to the dependent variable Homogeneity is very high within the strata. Heterogeneity is very high between the stratas

Why use stratified samples? permits examination of subgroups by ensuring sufficient numbers of subjects within subgroups 確保樣本包含母體中各種不同特性的個體,增加樣本的代表性 generally more convenient than a simple random sample

Potential disadvantages Sometimes the exact composition of the population is often unknown with multiple stratifying variables, sampling designs can become quite complex

Types of Stratified Sampling Proportionate Stratified Random Sampling 比例分層隨機抽樣 Disproportionate Stratified Random Sampling非比例分層隨機抽樣

Proportionate Sampling strata sample sizes are proportional to population subgroup sizes按母體比例抽取樣本 e.g., if a group represents 25% of the population, the stratum representing that group will comprise 25% of the sample

Disproportionate Sampling strata sample sizes are not proportional to population subgroup sizes每層抽出之樣本數不能與母體之特徵比例相呼應 may be used to achieve equal sample sizes across strata

For example: Suppose a researcher plans to conduct a survey regarding various attitudes of Agricultural College Students at Tunghai U. He wishes to compare perceptions across 4 major groups but finds some of the groups are quite small relative to the overall student population. As a result, he decides to over-sample minority students. For example, although Hospitality students only represent 10% of the Agricultural student population, he uses a disproportional stratified sample so that Hospitality students will comprise 25% of his sample.

Cluster Sampling部落抽樣 used when subjects are randomly sampled from within a "cluster" or unit (e.g., classroom, school, country, etc) 將母體分為若干部落 (cluster),在自所有部落中隨機抽取若干部落樣本並對這些抽取的部落作抽查

Population Sample Cluster 1 Cluster 2 Cluster 1 Cluster 4 Cluster 5 Cluster k Population Sample

Example 台中市民眾對薛凱莉事件看法 將台中市依“里”為部落分成許多里 隨機抽取3個里然後對此3個里的居民作全面性的訪問 Compare using cluster sampling technique and simple sampling technique

Why use cluster samples? They're easier to obtain than a simple random or systematic sample of the same size

Disadvantages of Cluster Sampling Less accurate than other sampling techniques (selection stages, accuracy) Generally leads to violation of an assumption that subjects are independent

Sampling Distribution 抽樣分配

For the most part in social science, we want to know about the population. In reality, the parameters are often unknown. The best thing we can do is to “guess” what our population should be like based on the info we get from a sample results of a sample=the results of a population???

Sampling Distributions抽樣分配 The “bridge” b/w information from the sample to the population a theoretical, probabilistic distribution of all possible samples of a given size, 在母體中重複抽取固定大小的隨機樣本,所有隨機樣本的統計值的機率分配稱為抽樣分配

Sampling distribution Population Sampling distribution Sample The relationship b/w population, sampling distribution, and sample.

 = 100 etc. for all possible samples of a given N from the population

Sampling Distribution 定理 當母體為normal distribution, 我們重複抽取固定大小的隨機樣本時, 則此一抽樣分配會趨近normal distribution 並且有一平均值及標準差

以五名學生的考試成績(91, 92, 93, 94,95)為母體, 母體的mean 為 93。試比較從5名學生(母體)中隨機抽取2位學生作為樣本(n=2)和隨機抽取3位學生作為樣本之抽樣分配

When n=2 sample Sample mean 91,92 91.5 92,94 93 91,93 92 92,95 93.5 91,94 92.5 93,94 91,95 93,95 94 92,93 94,95 94.5

When n=3 sample Sample mean 91,92,93 92 91,94,95 93.33 91,92,94 92.33 92,93,94 93 91,92,95 92.67 92,93,95 91,93,94 92,94,95 93.67 91,93,95 93,94,95 94

Sampling distribution of sample mean Mean of the sampling distribution =  St.D. of the sampling distribution (Standard Error ) = σ2/N Standard error (樣本平均數的標準誤)告訴我們樣本平均數對母體平均數的估計有多準確 N, Standard Error

Central Limit Theorem 中央極限定理 無論母體分配是否為normal distribution, 當我們重複抽取固定大小的隨機樣本時,只要樣本的N夠大 (N100),則此一抽樣分配也會趨近normal distribution If n is sufficiently large X ~N(, 2/n)

Summary of Sampling Distribution 若母體的分配式常態分配,則樣本平均的抽樣分配亦為常態分配 若母體的分配不是常態,則樣本平均的抽樣分配再樣本夠大時會近似常態分配 樣本平均值的平均會等於母體平均值 樣本標準差的平均會比母體標準差小

Exercise 假設王品牛排每位顧客等待主菜的時間呈常態分配,平均等待時間為10分鐘,標準差為2分鐘。某餐旅研究生作服務品質調查,隨機抽選16名顧各瞭解其等待時間,試問該16名顧客平均等待時間超過11分鐘的機率為何?

Sampling distribution of sample proportion( ) Mean of the sampling distribution of  = P Standard error of the sampling distribution of  =