普通物理 General Physics 2 – Straight Line Motion

Slides:



Advertisements
Similar presentations
Unit 4 Finding your way Integrated skills New words and phrases: past prep. 在另一边,到另一侧 treasure n. 宝藏 turning n. 转弯处 traffic n. 交通,来往车辆 traffic lights.
Advertisements

中考读写. News Chapter 4 a collection of collect v. 收集 这家博物馆拥有精美的绘画收藏品。 一群人;一批物品 收集者、收藏家 collector The museum has a fine collection of paintings.
第七课:电脑和网络. 生词 上网 vs. 网上 我上网看天气预报。 今天早上看了网上的天气预报。 正式 zhèngshì (报告,会议,纪录) 他被这所学校正式录取 大桥已经落成,日内就可以正式通车 落伍 luòw ǔ 迟到 chídào 他怕迟到,六点就起床了.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
XI. Hilbert Huang Transform (HHT)
Been During the Vacation?
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
普通物理 General Physics 25 - Capacitors and Capacitance
普通物理 General Physics 13 - Newtonian Gravitation
Differential Equations (DE)
普通物理 General Physics 6 – Friction, Drag, and Centripetal Force
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
D. Halliday, R. Resnick, and J. Walker
微積分網路教學課程 應用統計學系 周 章.
普通物理 General Physics 28 - Magnetic Force
普通物理 General Physics 32 - Maxwell's Equations, Models of Magnetism
初二英语写作课 课件 福建省闽清县第一中 王国豪
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
Continuous Probability Distributions
普通物理 General Physics 8 – Conservation of Energy
我祝願你足夠 背景音樂-星空下的小喇叭【電影:亂世忠魂】 AUTO.
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
普通物理 General Physics 9 - Center of Mass and Momentum
普通物理 General Physics 26 - Ohm's Law
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
The expression and applications of topology on spatial data
普通物理 General Physics 10 - Rotational Motion I
第14章 竞争市场上的企业 上海杉达学院 国贸系.
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 30 - Inductance
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
普通物理 General Physics 12 - Equilibrium, Indeterminate Structures
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
消費者偏好與效用概念.
Fundamentals of Physics 8/e 28 - Magnetic Force
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
A Burning Heart Luke 24: 13 – 35 路加 二四:
Neutron Stars and Black Holes 中子星和黑洞
錢買不到的禮物 自動換頁 音樂:海莉·衛斯頓 演唱<Nada Sousou> 日本電影「淚光閃閃」主題曲英文版
客户服务 售后服务.
Traditional Chinese Medicine
Chapter 5 Recursion.
IBM SWG Overall Introduction
普通物理 General Physics 21 - Coulomb's Law
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Have you read Treasure Island yet?
Mechanics Exercise Class Ⅰ
BORROWING SUBTRACTION WITHIN 20
中央社新聞— <LTTC:台灣學生英語聽說提升 讀寫相對下降>
Simple Regression (簡單迴歸分析)
Q & A.
Part One: Mechanics 卷一:力學
Mechanics Exercise Class Ⅱ
名词从句(2).
立足语境,放眼词块,螺旋上升 年温州一模试卷题型分析 及相应的二轮复习对策 by Sue March 14,2013.
Fundamentals of Physics 8/e 22 - Finding the Electric Field-I
英语单项解题思路.
动词不定式(6).
定语从句(2).
錢買不到的禮物 自動換頁 音樂:海莉·衛斯頓 演唱<Nada Sousou> 日本電影「淚光閃閃」主題曲英文版
Summary : 2. Motion In A Straight Line 摘要: 2. 直線運動
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Sun-Star第六届全国青少年英语口语大赛 全国总决赛 2015年2月 北京
Principle and application of optical information technology
Train Track and Children
Presentation transcript:

普通物理 General Physics 2 – Straight Line Motion 郭艷光Yen-Kuang Kuo 國立彰化師大物理系暨光電科技研究所 電子郵件: ykuo@cc.ncue.edu.tw 網頁: http://ykuo.ncue.edu.tw

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Outline 2-1 What Is Physics? 2-2 Motion 2-3 Position and Displacement 2-4 Average Velocity and Average Speed 2-5 Instantaneous Velocity and Speed 2-6 Acceleration 2-7 Constant Acceleration: A Special Case 2-8 Another Look at Constant Acceleration 2-9 Free-Fall Acceleration 2-10 Graphical Integration in Motion Analysis 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 2-1 What Is Physics? NASCAR engineers are fanatical about this aspect of physics as they determine the performance of their cars before and during a race. Geologists use this physics to measure tectonic-plate motion as they attempt to predict earthquakes. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 2-1 What Is Physics? Medical researchers need this physics to map the blood flow through a patient when diagnosing a partially closed artery, and motorists use it to determine how they might slow sufficiently when their radar detector sounds a warning. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 2-2 Motion In this chapter, we will study kinematics i.e. how objects move along a straight line. The line may be vertical, horizontal, or slanted, but it must be straight. Kinematics is the part of mechanics that describes the motion of physical objects. We say that an object moves when its position as determined by an observer changes with time. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 2-2 Motion We will assume that the moving objects are “particles” (by which we mean a point-like object such as an electron) i.e. we restrict our discussion to the motion of objects for which all the points move in the same way. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-3 Position and Displacement Position : To locate an object means to find its position relative to some reference point, often the origin (or zero point) of an axis such as the x axis. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-3 Position and Displacement Position is determined on an axis that is marked in units of length (here meters) and that extends indefinitely in opposite directions. A particle might be located at , which means it is 5 m in the positive direction from the origin. If it were at , it would be just as far from the origin but in the opposite direction. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-3 Position and Displacement Displacement : A change from one position x1 to another position x2 is called a displacement Δx, where , if the particle moves from x1 = 5 m to x2 = 12 m, then Δx = (12 m) - (5 m) = 7 m. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-3 Position and Displacement Displacement involves only the original and final positions. Displacement is a vector quantity, which is a quantity that has both a direction and a magnitude. A displacement of x = -4 m has a magnitude of 4 m and the motion is in the negative direction. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-4 Average Velocity and Average Speed A compact way to describe position is with a graph of position x plotted as a function of time t — a graph of x(t). 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-4 Average Velocity and Average Speed Average Velocity : It is the ratio of the displacement x that occurs during a particular time interval Δt to that interval: The notation means that the position is x1 at time t1 and then x2 at time t2. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-4 Average Velocity and Average Speed The time interval Δt is defined as : Δt = t2 – t1. The unit of vavg is : m/s (the meter per second). is the slope of the straight line that connects two particular points on the x(t) curve. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-4 Average Velocity and Average Speed Graphical determination of vavg Below , and , the corresponding positions are: and 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-4 Average Velocity and Average Speed Average speed : Average speed involves the total distance covered, independent of direction. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (a) You drive a beat-up pickup truck along a straight road for 8.4 km at 70 km/h, at which point the truck runs out of gasoline and stops. Over the next 30 min, you walk another 2.0 km farther along the road to a gasoline station. What is your overall displacement from the beginning of your drive to your arrival at the station? 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (a) Key idea: Your displacement Δx along the x axis is the second position minus the first position. Solutions: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (b) What is the time interval Δt from the beginning of your drive to your arrival at the station? Key idea: This average velocity is the ratio of the displacement for the drive to the time interval for the drive: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (b) Solutions: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (c) What is your average velocity vavg from the beginning of your drive to your arrival at the station? Find it both numerically and graphically. Key idea: vavg for the entire trip is the ratio of the displacement of 10.4 km for the entire trip to the time interval of 0.62 h for the entire trip. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (c) First solution: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (c) Second solution: 1. we graph the function x(t). 2. vavg is the ratio of the rise (Δx = 10.4 km) to the run (Δt = 0.62 h), which gives us vavg = 16.8 km/h. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (d) Suppose that to pump the gasoline, pay for it, and walk back to the truck takes you another 45 min. What is your average speed from the beginning of your drive to your return to the truck with the gasoline? Key idea: your average speed is the ratio of the total distance you move to the total time interval you take to make that move. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-1 (d) Solutions: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-5 Instantaneous Velocity and Speed Instantaneous Velocity: The velocity at any instant is obtained from the average velocity by shrinking the time interval Δt closer and closer to 0. Speed: We define speed as the magnitude of an object’s velocity vector. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-2 Figure 2-6a is an x(t) plot for an elevator cab that is initially stationary, then moves upward (which we take to be the positive direction of x), and then stops. Plot v(t). 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-2 Solutions: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-3 The position of a particle moving on an x axis is given by with x in meters and t in seconds. What is its velocity at t = 3.5 s? Is the velocity constant, or is it continuously changing? 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-3 Key idea: Velocity is the first derivative (with respect to time) of the position function x(t). Solutions: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 2-6 Acceleration Average Acceleration: When a particle’s velocity changes, the particle is said to undergo acceleration (or to accelerate). For motion along an axis, the average acceleration over a time interval is 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 2-6 Acceleration Instantaneous Acceleration: The acceleration of a particle at any instant is the rate at which its velocity is changing at that instant. Graphically, the acceleration at any point is the slope of the curve of v(t) at that point. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 2-6 Acceleration The acceleration of a particle at any instant is the second derivative of its position x(t) with respect to time. The unit of acceleration is: or 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 2-6 Acceleration Figure is a plot of the acceleration of the elevator cab discussed in Example 2-2. Each point on the a(t) curve shows the derivative (slope) of the v(t) curve at the corresponding time. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-4 (a) A particle’s position on the x axis is given by with x in meters and t in seconds. Find the particle’s velocity function v(t) and acceleration function a(t). 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-4 (a) Key idea: (1) To get the velocity function v(t), we differentiate the position function x(t) with respect to time. (2) To get the acceleration function a(t), we differentiate the velocity function v(t) 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-4 (a) Solutions: with v in meters per second. with a in meters per second squared. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-4 (b) Is there ever a time when ? Solutions: Setting v(t) = 0 yields Thus, the velocity is zero both 3s before and 3s after the clock reads 0. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-4 (c) Describe the particle’s motion for . Key idea: To examine the expressions for x(t), v(t), and a(t). Solutions: At t = 0, for 0 < t < 3 s, for t > 3 s, 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-7 Constant Acceleration: A Special Case 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-5 The head of a woodpecker is moving forward at s speed of 7.49 m/s when the beak makes first contact with a tree limb. The beak stops after penetrating the limb by 1.87 mm. Assuming the acceleration to be constant, find the acceleration magnitude in terms of g. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-5 Key idea: We can use the constant-acceleration equations to solve this problem. Solutions: the magnitude is 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-6 Figure 2-9 gives a particle’s velocity v versus its position as it moves along an x axis with constant acceleration. What is its velocity at position x = 0? 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-6 Solutions: We have two such pairs: (1) v = 8 m/s and x = 20 m, and (2) v = 0 and x =70 m. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-7 Two cars approach each other on a straight road. Car A moves at 16 m/s and car B moves at 8 m/s. When they are 45 m apart, both drivers apply their brakes. Car A slows down at 2 m/s2, while car B slows down at 4 m/s2. Where and when do they collide? 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-7 Solution: using We set xA = xB →t = 3 s and 5 s. Stop! Try to find the flaw in the above argument. At t = 3 s, 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-7 You can find vB is strange, because the car reversed its velocity! You can easily verify that B stops at 2 s. B stays at this position until it is hit by A. The collision occurs at 2.8 s and 37 m. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-8 Another Look at Constant Acceleration 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-9 Free-Fall Acceleration When an object either up or down and eliminates the effects of air on its flight, its acceleration is a certain constant rate, called the free-fall acceleration, and its magnitude is represented by g. The free-fall acceleration near Earth’s surface is a = - g = -9.8 m/s2, and the magnitude of the acceleration is g = 9.8 m/s2. Do not substitute -9.8 m/s2 for g. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-9 Free-Fall Acceleration B y 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-8 (a) On September 26, 1993, Dave Munday went over the Canadian edge of Niagara Falls in a steel ball equipped with an air hole and then fell 48 m to the water (and rocks). Assume his initial velocity was zero, and neglect the effect of the air on the ball during the fall. How long did Munday fall to reach the water surface? 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-8 (a) Solutions: Let y = 0 at his starting point and the positive direction up the axis. Then the acceleration is a = along that axis, and the water level is at y = m. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-8 (b) Munday could count off the three seconds of free fall but could not see how far he had fallen with each count. Determine his position at each full second. Solution: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-8 (c) What was Munday’s velocity as he reached the water surface? Solutions: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-8 (d) What was Munday’s velocity at each count of one full second? Was he aware of his increasing speed? Solutions: Once he was in free fall, Munday was unaware of the increasing speed because the acceleration during the fall was always 9.8 m/s2 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-9 A pitcher tosses a baseball up along a y axis, with an initial speed of 12 m/s. (a) How long does the ball take to reach its maximum height? (b) What is the ball’s maximum height above its release point? (c) How long does the ball take to reach a point 5.0 m above its release point? 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-9 Solution: 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-10 Graphical Integration in Motion Analysis A graph of an object’s acceleration versus time, we can integrate on the graph to find the object’s velocity at any given time. Velocity v is defined in terms of the position x as v = dx/dt, then where x0 is the position at time t0 and x1 is the position at time t1. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-10 Graphical Integration in Motion Analysis 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

2-10 Graphical Integration in Motion Analysis 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-10 “Whiplash injury” commonly occurs in a rear-end collision where a front car is hit from behind by a second car. In the 1970s, researchers concluded that the injury was due to the occupant’s head being whipped back over the top of the seat as the car was slammed forward. As a result of this finding, head restraints were build into cars, yet neck injuries in rear-end collisions continued to occur. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-10 In a recent test to study neck injury in rear-end collisions, a volunteer was strapped to a seat that was then moved abruptly to simulate a collision by a rear car moving at 10.5 km/h. Figure gives the accelerations of the volunteer’s torso and head during the collision, which began at time t = 0. The torso acceleration was delayed by 40 ms because during that time interval the seat back had to compress against the volunteer. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-10 The head acceleration was delayed by an additional 70 ms. What was the torso speed when the head began to accelerate? The a(t) curve of the torso and head of a volunteer in a simulation of a rear-end collision. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 Example 2-10 Solution: (b) Breaking up the region between the plotted curve and the time axis to calculate the area. 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授 End of chapter 2! 2018/11/18 普通物理講義-2 / 國立彰化師範大學物理系/ 郭艷光教授