普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo

Slides:



Advertisements
Similar presentations
自然運動 伽利略在運動學上的成就,奠定了牛頓動力學的基礎。伽利略成功的描述地球上物體的拋物運動,其主要基於兩個基本概念:
Advertisements

普通物理 General Physics 5 – Newton's Law of Motion
普通物理 General Physics 3 – Vectors Quantities
普通物理 General Physics 25 - Capacitors and Capacitance
普通物理 General Physics 13 - Newtonian Gravitation
广义相对论课堂5 引力红移/时间膨胀检验和推论
普通物理 General Physics 6 – Friction, Drag, and Centripetal Force
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
D. Halliday, R. Resnick, and J. Walker
位移與向量(Displacement and Vector)
微積分網路教學課程 應用統計學系 周 章.
4. Newton's Laws 牛頓定律 The Wrong Question 問錯題
普通物理 General Physics 28 - Magnetic Force
普通物理 General Physics 32 - Maxwell's Equations, Models of Magnetism
普通物理 General Physics 15 - Simple Harmonic Motion
普通物理 General Physics 2 – Straight Line Motion
普通物理 General Physics 8 – Conservation of Energy
第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
附加内容 “AS”用法小结(1).
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
Fundamentals of Physics 8/e 24 - Finding the Electric Potential
普通物理 General Physics 9 - Center of Mass and Momentum
普通物理 General Physics 26 - Ohm's Law
普通物理 General Physics 10 - Rotational Motion I
普通物理 General Physics 7 – Work-Kinetic Energy Theorem
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 30 - Inductance
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
普通物理 General Physics 12 - Equilibrium, Indeterminate Structures
普通物理 General Physics 23 - Finding the Electric Field-II
Fundamentals of Physics 8/e 23 - Finding the Electric Field-II
多相流搅拌器 练习 7.
Fundamentals of Physics 8/e 28 - Magnetic Force
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
Fundamentals of Physics 8/e 25 - Capacitors and Capacitance
Neutron Stars and Black Holes 中子星和黑洞
Fundamentals of Physics 8/e 30 - Inductance
句子成分的省略(1).
Chapter 9 (三维几何变换) To Discuss The Methods for Performing Geometric Transformations.
Short Version : 9. Systems of Particles 短版: 9.多質點系统
Fundamentals of Physics 8/e 0 – Table of Contents
普通物理 General Physics 21 - Coulomb's Law
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
Summary for Chapters 24 摘要: 24章
Chapter 10 : Balance of Machinery
科學遊戲實作_SM的魔法教室 私立協同中學物理教師 何世明.
成才之路 · 英语 人教版 · 必修1 路漫漫其修远兮 吾将上下而求索.
物體的運動包含質心的運動與繞質心的轉動:
运动学 第一章 chapter 1 kinematices.
12. Static Equilibrium 靜力平衡
2 滾動、力矩角、動量.
Q & A.
Summary : 3. Motion in 2- & 3-D 摘要: 3. 二及三維運動
Part One: Mechanics 卷一:力學
在運動過程中,粒子在每一特定時間對應一特定位置:位置是時間的函數!
Mechanics Exercise Class Ⅱ
Fundamentals of Physics 8/e 21 - Coulomb's Law
Fundamentals of Physics 8/e 22 - Finding the Electric Field-I
动词不定式(6).
12. Static Equilibrium 靜力平衡
定语从句(2).
句子成分的省略(3).
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Principle and application of optical information technology
Presentation transcript:

普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo 國立彰化師大物理系暨光電科技研究所 電子郵件: ykuo@cc.ncue.edu.tw 網頁: http://ykuo.ncue.edu.tw

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Outline 11-1 What Is Physics? 11-2 Rolling as Translation and Rotation Combined 11-3 The Kinetic Energy of Rolling 11-4 The Forces of Rolling 11-5 The Yo-Yo 11-6 Torque Revisited 11-7 Angular Momentum 11-8 Newton’s Second Law in Angular Form 11-9 The Angular Momentum of a System of Particles 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis 11-11 Conservation of Angular Momentum 11-12 Precession of a Gyroscope 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-1 What Is Physics? The most important application of physics is in the rolling motion of wheels and wheel-like objects. Today, like it or not, the world is filled with cars, trucks, motorcycles, bicycles, and other rolling vehicles. 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-2 Rolling as Translation and Rotation Combined A wheel of radius R rolling without slipping: O and P move forward by a distance s. The linear speed vcom of the center of the wheel (the center of mass of this uniform wheel) is (smooth rolling motion) 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-2 Rolling as Translation and Rotation Combined Rolling motion of a wheel is a combination of translational and rotational motions. At the top of the wheel, the velocity is 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-1 (a) A flywheel of radius 20 cm starts from rest, and has a constant angular acceleration of 60 rad/s2. Find the magnitude of the net linear acceleration of a point on the rim after 0.15 s. Solution: The tangential acceleration is 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-1 (b) The number of revolutions completed in 0.25 s. Solution: From The corresponds to 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-3 The Kinetic Energy of Rolling A rolling object has two types of kinetic energy: (1) Rotational kinetic energy : Due to its rotation about its center of mass. (2) Translational kinetic energy : Due to translation of its center of mass. 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-3 The Kinetic Energy of Rolling Proof of Equation: If we view the rolling as pure rotation about an axis through P, From the parallel-axis theorem, we have and 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-2 Approximate each wheel on the car Thrust SSC as a disk of uniform thickness and mass M = 170 kg, and assume smooth rolling. When the car’s speed was 1233 km/h, what was the kinetic energy of each wheel? 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-2 Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-4 The Forces of Rolling Friction and Rolling: If the wheel does not slide, the force is a static frictional force and the motion is smooth rolling. We can obtain linear acceleration and angular acceleration . (smooth rolling motion) 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-4 The Forces of Rolling Rolling down a Ramp: A round uniform body of mass M and radius R rolling smoothly down a ramp at angle , along an x axis. 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-4 The Forces of Rolling 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-4 The Forces of Rolling Cylinder: acom 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-4 The Forces of Rolling Hoop: acom 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-3 (a) A uniform ball, of mass M = 6.00 kg and radius R, rolls smoothly from rest down a ramp at angle = 30.0°. The ball descends a vertical height h = 1.20 m to reach the bottom of the ramp. What is its speed at the bottom? 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-3 (a) Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-3 (b) What are the magnitude and direction of the frictional force on the ball as it rolls down the ramp? Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-3 (b) 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-5 The Yo-Yo We use Newton’s second law to find an expression for the linear acceleration acom of a yo-yo rolling down a string. y acom 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-5 The Yo-Yo y acom 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-6 Torque Revisited 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-4 Three forces, each of magnitude 2.0 N, act on a particle. The particle is in the xz plane at point A given by position vector , where r = 3.0 m and . Force is parallel to the x axis . force and is parallel to the z and y axis. What is the torque, about the origin O, due to each force? 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-4 Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-7 Angular Momentum The angular momentum of this particle with respect to the origin O is a vector quantity defined as 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 11-7 Angular Momentum Angular momentum depends on the choice of the origin O. If the origin is shifted in general, we get a different value of . SI unit for angular momentum: Sometimes the equivalent is used. 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-5 Figure shows an overhead view of two particles moving at constant momentum along horizontal paths. Particle 1, with momentum magnitude p1 = 5.0 kg·m/s, has position vector and will pass 2.0 m from point O. Particle 2, with momentum magnitude p2 = 2.0 kg·m/s, has position vector and 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-5 will pass 4.0 m from point O. What are the magnitude and direction of the net angular momentum about point O of the two- particle system? Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-8 Newton’s Second Law in Angular Form The (vector) sum of all the torques acting on a particle is equal to the time rate of change of the angular momentum of that particle. Rotation form of Newton’s second law for a particle. Compare with 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-8 Newton’s Second Law in Angular Form Proof of Equation: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-6 (a) A penguin of mass m falls from rest at point A, a horizontal distance D from the origin O of an xyz coordinate system. (The positive direction of the z axis is directly outward from the plane of the figure.) What is 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-6 (a) the angular momentum of the falling penguin about O? Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-6 (b) About the origin O, what is the torque on the penguin due to the gravitational force ? Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-9 The Angular Momentum of a System of Particles The angular momentum of particles: The time derivative of the angular momentum is: O m1 m3 m2 ℓ1 ℓ2 ℓ3 x y z 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-7 Two blocks with masses m1 = 3 kg and m2 = 1 kg are connected by a rope that passes over a pulley of radius R = 0.2 m and mass M = 4 kg. The moment of inertia of the pulley about its center is I = MR2/2. Find the linear acceleration of the block of mass m2 is at a distance R above the center of the pulley. 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-7 Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis Angular momentum L: Lz is not a vector equation; it represents only the component of the angular momentum along the angular velocity. (Rigid body, fixed axis) 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis Proof of Equation: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-8 (a) George Washington Gale Ferris, Jr., a civil engineering graduate from Rensselaer Polytechnic Institute, built the original Ferris wheel for the 1893 World’s Columbian Exposition in Chicago. The wheel, an astounding engineering construction at the time, carried 36 wooden 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-8 (a) cars, each holding as many as 60 passengers, around a circle of radius R = 38 m. The mass of each car was about 1.1 × 104 kg. The mass of the wheel’s structure was about 6.0 × 105 kg, which was mostly in the circular grid from which the cars were suspended. The wheel made a complete rotation at an angular speed in about 2 min. Estimate the magnitude L of the angular momentum of 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-8 (a) the wheel and its passengers while the wheel rotated at . Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-8 (a) 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-8 (b) Assume that the fully loaded wheel is rotated from rest to in a time period What is the magnitude of the average net external torque acting on it during ? Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-11 Conservation of Angular Momentum Low of conservation of angular momentum: If the external torque on a system is zero, the total angular momentum is constant in magnitude and direction. or 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-11 Conservation of Angular Momentum If the component of the net external torque on a system along a certain axis is zero, then the component of the angular momentum of the system along that axis cannot change, no matter what changes take place within the system. 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-11 Conservation of Angular Momentum The spinning volunteer: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-11 Conservation of Angular Momentum The rotation rate of Fig, (b) is faster 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-9 Fig (a) shows a student, again sitting on a stool that can rotate freely about a vertical axis. The student, initially at rest, is holding a bicycle wheel whose rim is loaded with lead and whose rotational inertia Iwh about its central axis is 1.2 kg·m2. The wheel is 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-9 rotating at an angular speed of 3.9 rev/s; as seen from overhead, the rotation is counterclockwise. The axis of the wheel is vertical, and the angular momentum of the wheel points vertically upward. The student now inverts the wheel ( Fig. 11-20b ) so that, as seen from overhead, it is rotating clockwise. Its angular momentum is now . The inversion results in the student, the 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-9 stool, and the wheel’s center rotating together as a composite rigid body about the stool’s rotation axis, with rotational inertia Ib = 6.8 kg ·m2. With what angular speed and in what direction does the composite body rotate after the inversion of the wheel? 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-9 Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-10 A cockroach with mass m rides on a disk of mass 6.00 m and radius R. The disk rotates like a merry-go-round around its central axis at angular speed = 1.50 rad/s. The cockroach is initially at radius r = 0.800 R, but then it crawls out to the rim of the disk. 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 Example 11-10 Treat the cockroach as a particle. What then is the angular speed? Solution: 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-12 Precession of a Gyroscope Translational Motion Rotational Motion 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

11-12 Precession of a Gyroscope Translational Motion Rotational Motion 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授 End of chapter 11! 2018/11/20 普通物理講義-11 / 國立彰化師範大學物理系/ 郭艷光教授