3.1.3几种常见函数的导数 高二数学 选修1-1.

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

版 画 制 作版 画 制 作 版 画 种 类版 画 种 类 版 画 作 品版 画 作 品 刘承川.
导数与微分 一、导数的概念 1. 自变量的增量: 2. 函数的增量: 3. 导数的定义:. 导数与微分 即导数为函数增量与自变量增量比的极限.
扬州环境资源职业技术学院基础部 一、微分的定义 二、微分的几何意义 四、微分在近似计算中的应用 第五节 函数的微分 三、基本初等函数的微分公式与微分运算 法则.
2.5 微分及其应用. 三、可微的条件 一、问题的提出 二、微分的定义 六、微分的形式不变性 四、微分的几何意义 五、微分的求法 八、小结 七、微分在近似计算中的应用.
中医内科 陈良金. 目的要求: 熟悉虚劳的证候特征。 了解虚劳的发病与气血阴阳及五脏的关系。 掌握虚劳和肺痨及一般虚证的区别与联系。 掌握虚劳的治疗要点。 熟悉虚劳各个证型的辨证论治。 了解虚劳的预后及调摄护理。
写作中的几点小技巧 金乡县羊山中学 张秀玲. 一、写外貌不用 “ 有 ” 作文如何来写外貌?同学们的作文里总会出现类 似这样的句子: “ XX 可漂亮了,她有一头卷卷的黄头 发,有一双乌黑的葡萄般的大眼睛,有高高的鼻子, 还有一张樱桃小嘴。 ” 如果试着去掉文中的 “ 有 ” ,把文字重新修改一遍,
十大写作技巧. 一、写外貌不用 “ 有 ” 作文如何写外貌?孩子的作文里总会看到类似这样的名 子: “XX 可漂亮了,她有一头卷卷的黄头发,有一双乌黑的 葡萄般的大眼睛,有一个高高的鼻子,还有一张樱桃小嘴。 ” 如果你试着让他们去掉文中的 “ 有 ” ,把文字重新串联一遍, 会发现作文顺了很多。 写上段文字的同学经蒋老师指导后修改如下:
招商谈判技巧 芝麻官营销. 技巧原则 孙子兵法云: “ 兵无常势,水无常形,能 因敌之变化而取胜者,谓之神。 ” “ 内功心法 ” 只有在真正实践中才能体会、 掌握。 谈判有没有具体的套路?有没有 “ 一招制 敌 ” 的擒拿手?
商管群科科主任 盧錦春 年 3 月份初階建置、 4 月份進階建置、 5 月份試賣與對外營業。
“ 十二五 ” 广东省科技计划项目 经费监管培训 广东省科技厅 一、专项经费管理法规 一、专项经费管理法规 二、经费监督检查 二、经费监督检查 三、项目预算调整管理 三、项目预算调整管理 四、课题经费预算执行管理 四、课题经费预算执行管理 五、项目(课题)财务验收 五、项目(课题)财务验收 2.
教育研究课题的实施 北京教育科学研究院 陶文中 第一节 如何制定课题研究计划 (开题论证报告) 一般结构(框架) 1 、课题名称 2 、研究目的和意义 3 、研究的基本内容 ( 1 )理论研究(细分为若干子项目) ( 2 )实践研究( 细分为若干子项目)
第二章 中药药性理论的现代研究 掌握中药四性的现代研究 掌握中药五味的现代研究 掌握中药毒性的现代研究 了解中药归经的现代研究.
1 修辞手法 2 表现手法 3 表达方式 4 结构技巧 表达技巧.
高等数学 A (一) 总复习(2).
2015年衢州开化 事业单位备考讲座 浙江研究院 刘洁.
事业单位法人年度报告制度改革 业 务 培 训.
专利技术交底书的撰写方法 ——公司知识产权讲座
轻松应对百变题型——说明文阅读 五年级 语文 赵老师.
描写家乡的一处景物.
小一中文科 家長工作坊
二次函数图象特点的应用 结题报告 K-11 班研究性学习小组 李浚滨制作.
二次函數 高士欽 林國源.
少阳病和柴胡剂 郝万山(北京中医药大学).
明城 微课程研究运用 姓 名:严静华 单 位:佛山市高明区东洲中学 作品名称:《排比的理解与运用》
公文及公文处理 学校办公室 姚利民.
(某同学作文选段) 这就是我 大家好,我的名字叫XX,我家在XX,但是小学的时候我在XX学校读书,我现在读书在永固中学,我现在说学校变化,但是我回校读书坐单车,还有学校很大,初中学习练几课,老师有很多,学校学生有很多,但是现在很重要学习,但是我家有很多工叫做,没有那么多时间学习。
1.2.2《函数的表示法》.
青岛市农村实用人才高等学历教育 2013年秋季入学测试考前练兵 语文----写作部分辅导
德育导师制基本经验介绍.
秀明小學 原來可以這樣學習 應用題 黃耀勤老師 石慧慧老師 李玉珍老師.
小一中文科 家長工作坊
邯郸摸底考试网阅分析25题(3) 河北广平县第一中学 于沙.
2013年全省法制培训提纲 (工商执法中若干问题的解决思路) 2013年3月12日.
胚胎学总论 (I) 制作:皖南医学院组胚教研室.
第四章:社交礼仪 一、社交礼仪的原则 二、社交礼仪的特点 三、社交礼仪的常识 四、工作面试中的个人礼仪 五、考研复试中的礼仪.
主讲人 杨延风律师 合同的实务操作与法律风险防范.
“深入推进依法行政加快建设法治政府” -《法治政府建设实施纲要》解读
关于学生户口迁移的有关说明 保卫处户籍室.
檔案銷毀作業 臺南市政府.
第六节 可降阶的二阶微分方程 一、 型的微分方程 二、 型的微分方程 三、 型的微分方程.
企业秘书写作 主讲教师:黄巨龙.
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
温泉部操作实务.
第五章 定积分及其应用.
第二节 极限的概念 一、数列的极限 二 、函数的极限 第一章 目标: 理解函数极限的定义;无穷小的性质
第十二章 线性回归.
指数函数图象的平移.
9.1 圓的方程 圓方程的標準式.
函数的和、差、积的导数.
第三章 导数和微分 一、导数的概念 3.1 瞬时速度和切线斜率
售后维修技术指导与问题解析 -飞机类 韩亚军
导数的应用 ——函数的单调性与极值.
幂函数 大连市第十六中学李秀敏.
因式定理.
第一章 直角坐標系 1-2 直角坐標.
四川省天全中学说课竞赛 多媒体演示课件 ★ ☆ 函数的单调性 天全中学数学组 熊 亮.
二次函數的圖形的探討 一次函數與二次函數的定義 一次函數的圖形 二次函數的圖形.
第三章 导数及其应用.
3.1导数的几何意义.
导数的几何意义及其应用 滨海中学  张乐.
(3.3.2) 函数的极值与导数.
函数图象的变换及应用 去除PPT模板上的--课件下载: 的文字
認識函數.
第二部分 导数与微分 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 对于一元函数来说, 微分本质上就是导数. 这一部分内容是“导数与微分”. 由此可见, 这一部分内容在本课程中的重要地位. 我们是在极限的基础之上讨论函数的导数和微分的. “导数与微分”是每个学习高等数学的人必须掌握的内容.
§3 函数的单调性.
第二章 一元一次不等式和一元一次不等式组 回顾与复习(一).
第4讲 函数的单调性与最值 考纲要求 考纲研读 1.会求一些简单函数的值域. 2.理解函数的单调性、最大值、最小值及其几何意义.
第三章 导数及其应用.
函数与导数 临猗中学 陶建厂.
Presentation transcript:

3.1.3几种常见函数的导数 高二数学 选修1-1

一、复习 1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式——导数,导数源于实践,又服务于实践. 2.求函数的导数的方法是: 说明:上面的方法中把x换x0即为求函数在点x0处的 导数.

说明:上面的方法中把x换x0即为求函数在点x0处的 导数. 3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。 4.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0))处的切线的斜率. 5.求切线方程的步骤: (1)求出函数在点x0处的变化率 ,得到曲线 在点(x0,f(x0))的切线的斜率。 (2)根据直线方程的点斜式写出切线方程,即

二、几种常见函数的导数 根据导数的定义可以得出一些常见函数的导数公式. 1) 函数y=f(x)=c的导数. 公式1: .

请同学们求下列函数的导数: 表示y=x图象上每一点处的切线斜率都为1 这又说明什么?

公式2: . 请注意公式中的条件是 ,但根据我们所掌握的知识,只能就 的情况加以证明.这个公式称为幂函数的导数公式.事实上n可以是任意实数.

我们今后可以直接使用的基本初等函数的导数公式 你记住了吗? 我们今后可以直接使用的基本初等函数的导数公式

导数的运算法则: 法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即: 法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数 ,即: 法则3:两个函数的商的导数,等于第一个函数的导数乘第二个函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函数的平方.即:

三、看几个例子: 例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,求与直线PQ平行的曲线y=x2的切线方程。

2)

例3.求函数y=x3-2x+3的导数.

模式训练 答案:

例4.某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.

变式训练 已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程. 解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2). 对于 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.② 因为两切线重合, 若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4. 所以所求l的方程为:y=0或y=4x-4.

四、小结与作业 1.会求常用函数的导数. 2.能结合其几何意义解决一些与切点、切线斜率有关的较为综合性问题.

模式练习 求曲线y=x2在点(1,1)处的切线与x轴、直线x=2所围城的三角形的面积。