偏導數的幾何意義 考慮一個由方程式 所決定的曲面。就如下面的圖3所顯示的,平面 與曲面相交於平面曲線 上,且這個值 就是這條曲線在點

Slides:



Advertisements
Similar presentations
第三章 導函數 ‧ 函數的極限與連續 函數的極限與連續 ‧ 導數及其基本性質 導數及其基本性質 ‧ 微分公式 微分公式 ‧ 高階導函數 高階導函數 總目錄.
Advertisements

Chap 3 微分的應用. 第三章 3.1 區間上的極值 3.2 Rolle 定理和均值定理 3.3 函數的遞增遞減以及一階導數的判定 3.4 凹面性和二階導數判定 3.5 無限遠處的極限 3.6 曲線繪圖概要 3.7 最佳化的問題 3.8 牛頓法 3.9 微分.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
National Kaohsiung First University of Science and Technology Infomechatronics and Power Electronics Lab. 國立高雄第一科技大學機械與自動化工程系 微 積 分 Chapter2 導 數.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
CH2: 微分學 切 The definition of derivatives CH2: 微分學 Step1 :
工職數學 第四冊 第一章 導 數 1 - 1 函數的極限與連續 1 - 2 導數及其基本性質 1 - 3 微分公式 1 - 4 高階導函數.
不定積分 不定積分的概念 不定積分的定義 16 不定積分的概念 16.1 不定積分的概念 以下是一些常用的積分公式。
大綱 1. 三角函數的導函數. 2. 反三角函數的導函數. 3. 對數函數的導函數. 4. 指數函數的導函數.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
2-1 極限的概念 2-2 無窮等比級數 2-3 多項式函數的導數導函數 2-4 微分公式 2-5 微分的應用 2-6 積分的概念與反導函數 信樺文化.
變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
1.1 利用平方差及完全平方的恆等式 分解因式 A 利用平方差的恆等式 B 利用完全平方的恆等式 目錄.
3-2 條件不等式 解一元 n 次不等式 二元一次不等式的圖解法 函數的極植.
遞迴關係-爬樓梯.
第三章重要公式與定理之復習 1. 收斂到 f( x )。.
工程數學 第6章 一階微分方程.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第三章 導函數 ‧3-1 函數的極限與連續 ‧3-2 導數及其基本性質 ‧3-3 微分公式 ‧3-4 高階導函數.
商用微積分 CH3 微分.
全 微 分 欧阳顺湘 北京师范大学珠海分校
5.1 自然對數函數:微分 5.2 自然對數函數:積分 5.3 反函數 5.4 指數函數:微分與積分 5.5 一般底數的指數函數和應用 5.6 反三角函數:微分 5.7 反三角函數:積分 5.8 雙曲函數.
圓心角、圓周角與弦切角 圓心角 圓周角 弦切角 圓內角 圓外角 ∠AOB= ∠APB= ∠APC= A B P m0 A B P m0 A
12.4 切線向量和法向量 Tangent Vectors and Normal Vectors
Differentiation 微分 之一 微分的基本原理.
龍華科技大學 機械工程系 微積分(一)網路教學     李瑞貞老師.
2-1 直線方程式及其圖形 直線的斜率 1 直線的方程式 2 兩直線關係 直線方程式及其圖形 page.1/22.
4B冊 認識公倍數和最小公倍數 公倍數和最小公倍數的關係.
Differentiation 微分 之一 微分的基本原理.
9.1 直線之方程 附加例題 1 附加例題 2 附加例題 3 附加例題 4 © 文達出版 (香港 )有限公司.
第五講 連鎖律與隱函數微分法 Chain Rule & Implicit Differentiation
第四單元 微積分基本定理.
6.1 利用正弦公式及餘弦公式解三角形 正弦公式.
3.5 連鎖律.
Ch2 空間中的平面與直線 2-1 空間中的平面 製作老師:趙益男/基隆女中教師 發行公司:龍騰文化事業股份有限公司.
Ch2多項式函數 2-2 多項式的運算與應用 影音錄製:陳清海老師 資料提供:龍騰文化事業股份有限公司.
第一章 直角坐標系 1-3 函數圖形.
15.3 極大與極小 附加例題 5 附加例題 6 © 文達出版 (香港 )有限公司.
微積分網路教學課程 應用統計學系 周 章.
圓的定義 在平面上,與一定點等距的所有點所形成的圖形稱為圓。定點稱為圓心,圓心至圓上任意一點的距離稱為半徑,「圓」指的是曲線部分的圖形,故圓心並不在圓上.
本講次學習目標 認識三角函數 瞭解三角函數之極限與連續 三角函數之導函數 有關三角函數之極值問題
( )下列各圖中何者的L1與L2會平行? C 答 錯 對 (A) (B) (C) (D)
圖解配方法 張美玲老師製作.
第一章 直 線 ‧1-3 二元一次方程式的圖形.
第三章 直線方程式與 二元一次不等式 3-1 直線的斜角與斜率 3-2 直線方程式的求法 3-3 二元一次方程式的圖形
5.1 弧度制 例 5.3 解:.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
3-5 多項式方程式 實係數多項式方程式及其根 多項式方程式的解法 虛根成對定理 勘根定理 正數a的正n次方根.
Chapter 15 檔案存取 LabVIEW中的檔案存取函數也可將程式中的資料儲存成Excel或Word檔。只要將欲存取的檔案路徑位址透過LabVIEW中的路徑元件告訴檔案存取函數後,LabVIEW便可將資料存成Excel或Word檔;當然也可以將Excel或Word檔的資料讀入LabVIEW的程式中。
7.5 三維空間問題 附加例題 6 附加例題 7 互動學習程式 三維空間 問題.
例題 1. 多項式的排列 1-2 多項式及其加減法 將多項式 按下列方式排列: (1) 降冪排列:______________________ (2) 升冪排列:______________________ 排列 降冪:次數由高至低 升冪;次數由低至高.
4-2二元一次方程式的圖形 授課老師:黃韋欽 上課教材:南一版.
( )下列何者正確? (A) 7< <8 (B) 72< <82 (C) 7< <8 (D) 72< <82 C 答 錯 對.
線型函數 李惠菁 製作 1.變數與函數 2. 線性函數及其圖形 3. 單元測驗.
1-4 和角公式與差角公式 差角公式與和角公式 1 倍角公式 2 半角公式 和角公式與差角公式 page.1/23.
第一章 直角坐標系 1-3 函數及其圖形.
1 試求下列三角形的面積: 在△ABC中,若 , ,且∠B=45° 在△PQR中,若 , ,且∠R=150° (1) △ABC面積 。
4-1 變數與函數 第4章 一次函數及其圖形.
在△ABC 與△DEF 中,∠B=∠E=65°,∠A=57°,∠F=58°,請問兩個三角形是否相似?為什麼?
在直角坐標平面上兩點之間 的距離及平面圖形的面積
3-5 多項式方程式 實係數多項式方程式及其根 一般而言,可化成 f (x)=0 形式的方程式,其中
解下列各一元二次方程式: (1)(x+1)2=81 x+1=9 或 x+1=-9 x=8 或 x=-10 (2)(x-5)2+3=0
17.1 相關係數 判定係數:迴歸平方和除以總平方和 相關係數 判定係數:迴歸平方和除以總平方和.
以下是一元一次方程式的有________________________________。
第三十單元 極大與極小.
第十七講 重積分 應用統計資訊學系 網路教學課程 第十七講.
第二十五單元 等高線.
16.4 不定積分的應用 附加例題 4 附加例題 5.
Presentation transcript:

偏導數的幾何意義 考慮一個由方程式 所決定的曲面。就如下面的圖3所顯示的,平面 與曲面相交於平面曲線 上,且這個值 就是這條曲線在點   考慮一個由方程式      所決定的曲面。就如下面的圖3所顯示的,平面    與曲面相交於平面曲線   上,且這個值     就是這條曲線在點     的切線的斜率。

  因此,通過點        而位於平面   上之切線方程式為

  同樣的,平面    與曲面交於平面   上,且    就是這條曲線在 點 的切線斜率。

  因此,通過點       而位於平面   上之切線方程式為

例5. 試求球面 與平面 相交之曲線於點 之切線方程式。 解:因 在平面 上,切線過 點的斜率為 例5. 試求球面      與平面   相交之曲線於點    之切線方程式。 解:因         在平面   上,切線過 點的斜率為   故所求之切線方程式為          ,   亦即

習題: 求下列各函數之偏導數: (1) (2) (3) (4) (5) 求曲面       與平面   之交線於點   之切線斜率與斜線方程式。

高階偏導數 (Higher-order Partial Derivatives)   關於多元函數求偏導數,我們可以瞭解到,當對某一變數做偏微時,只要將其他變數視為常數來處理即可。因此,多元函數求偏導數之方法與一元函數求導數是相似的。一元函數我們有討論高階導數的計算與應用,同樣的,對於多元函數我們也可推至高階偏導數。現在我們就來討論高階偏導數。

定義 二階偏導數(Second-order Partial Derivatives)   由於一個函數的 與 的偏導數實際上也是這兩個變數的函數,它或許可以再對 或 來做偏微分,於是得到四個 的二階偏導數(second partial derivatives) 

例6. 若        ,試求二階 偏導數。 解: ,   將    分別對 與 再做偏微分, 則得

例7. 若        ,試求二階偏導 數。 解:   則    分別對 與 做偏微分,得

  將    分別對 與 做偏微分,得

例8. 若      ,求   及    。 解:   對 再做偏微分,得

  對 再做偏微分,得   將   代入,得

  一元函數的高階導數,可應用於許多問題上,特別是求極大值與極小值時。同樣的,二元函數的二階偏導數,在後續的討論中,也有許多可應用的問題。目前我們所討論的多元函數,都以二元為例,而高階偏導數也討論至二階偏導數,事實上,多元函數可以推廣至多於兩個變數,而高階偏導數也可推至高於二階,只要大家瞭解了偏微分的基本定義以及計算方法,應該可以往更多元的函數去發展。

習題: 試求下列各二元函數所有之二階偏導數:

習題: 試求下列各二元函數所有之二階偏導數: (4) (5) (6)