IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 7, JULY 2013 Torque Density Elevation in Concentrated Winding Interior PM Synchronous Motor With Minimized Magnet Volume 指導老師:王明賢 學生:黃冠豪
目錄 摘要 簡介 PMSM磁力轉矩 PM設計理念 分析結果 實驗驗證 結論 參考文獻
摘要 PMSM已被用於車輛上 轉矩密度高,效率高,轉速範圍寬 修改PM形狀和最小磁鐵體積來增加轉矩 轉矩、轉矩波動、鐵心損耗、磁損耗由三個模型進行分析
簡介 具有許多優點主要是在重量和體積,比其他馬達有更高的效率 缺點是成本高,因為釹和鏑的價格飆升 有些可以取用SRM的優點 單層IPMSM是在扭矩和速度方面優於PMSM 本文提出修改磁鐵外型與最小磁鐵體積來增加轉矩密度的方法
永磁同步電機電磁轉矩 T= 𝝅 𝟒 𝒌 𝝎 𝐁 𝒈 𝒂𝒄𝒄𝒐𝒔𝜷 ( 𝑫 𝒈 )^𝟐* 𝑳 𝒔𝒕𝒌 (1) 𝑬 𝒈 = 𝑽 𝒈 𝑩 𝒈 𝐇 𝒈 𝟐 =− 𝑽 𝒎 𝑩 𝒎 𝑯 𝒎 𝟐 (2) 𝑩 𝒈 = − 𝝁 𝟎 𝐕 𝐦 𝐕 𝐠 𝐇 𝐦 𝑩 𝒎 (3) 𝐁 𝐦 = 𝐀 𝐠 𝐥 𝐦 𝛍 𝐫 𝐀 𝐦 𝐥 𝐠 + 𝐀 𝐠 𝐥 𝐦 𝐁 𝐫 (4) 𝐇 𝐦 =− 𝐀 𝐦 𝐥 𝐠 𝛍 𝟎 𝛍 𝐫 𝐀 𝐦 𝐥 𝐠 + 𝐀 𝐠 𝐥 𝐦 𝐁 𝐫 (5)
PM設計理念 Fig. 1. PM flux density, demagnetizing force, and PM energy product when (a) the PM thickness is increased and (b) the PM width is increased.
PM設計理念 Fig. 2. Air-gap flux density when magnet thickness and width are increased
分析結果 TABLE I SPECIFICATION OF IPMSM
分析結果 Fig. 3. Analysis models with different PM shapes. (a) Model 1 (bar shape, volume: 7.2 ). (b) Model 2 (bar shape, volume: 11.52 ). (c) Model 3 (V shape, volume: 7.95 ).
分析結果 Fig. 4. Demagnetization curve of PM and permeance lines. TABLE II COMPARISON OF PERMANENT MAGNETIC FLUX DENSITY AND AIR-GAP FLUX DENSITY
分析結果 TABLE III CHARACTERISTICS OF ANALYSIS MODELS
實驗驗證 Fig. 6. Prototype of the V-shaped IPMSM (Model 3) Fig. 7. Experiment and simulation results of no-load line-induced voltage at 1000 r/min. (a) Experiment. (b) Simulation.
結論 牽引電機,必需要有高扭矩,所以IPMSM是最合適的。IPMSM有高PM成本的缺點。因此,電動機的設計,可以最大限度地減少PM的量並最大化輸出密度是必要的。 基於所使用的PM的數量和磁鐵形狀本研究分析的轉矩特性。當要增加扭矩時,增加PM厚度比增加的寬度更為有效。我們可以得出結論,當PM寬度增加與PM厚度增加相比,大約少於70%的PM量。
參考文獻 [1] A. Chiba, Y. Takano, M. Takeno, T. Imakawa, N. Hoshi,M. Takemoto,and S. Ogasawara, “Torque density and efficiency improvements of a switched reluctance motor without rare-earth material for hybrid vehicles,”IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1240–1246, May/Jun.2011. [2] N. Schofield, S. A. Long, D. Howe, and M. McClelland, “Design of a switched reluctance machine for extended speed operation,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 116–122, Jan./Feb. 2009.[3] T. Wang, P. Zheng, Q. Zhang, and S. Cheng, “Design characteristics of the induction motor used for hybrid electric vehicle,” IEEE Trans. Magn., vol. 41, no. 1, pp. 505–508, Jan. 2005. [4] D.-H. Cho, H.-K. Jung, and C.-G. Lee, “Induction motor design for electric vehicle using a niching genetic algorithm,” IEEE Trans. Ind.Appl., vol. 37, no. 4, pp. 994–999, Jul./Aug. 2001. [5] R. Schiferl, “Design considerations for salient-pole permanent-magnet synchronous motors in variable-speed drive applications,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Wisconsin-Madison, Madison, WI,USA, 1987. [6] Y. Honda, T. Higaki, S.Morimoto, and Y. Takeda, IEE Proc.: Electr.Power Appl., vol. 145, p. 119, 1998.
報告完畢