计算题训练二 (时间:90分钟,满分100分) 1.(2009·佛山市质量检测二)(14分)如图1甲所示,

Slides:



Advertisements
Similar presentations
带电粒子在磁场中的 圆周运动(上) 庞留根 吕叔湘中学 2006年7月
Advertisements

§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
动能定理 关山中学 史清涛.
浅谈物理教学中迁移能力的培养 加强审题环节的教学 注重解题后知识点和解题方法的的归纳整理 加强变式训练 提高迁移能力
高中物理第二轮专题复习 电磁场问题.
第一讲:带电粒子在复合场中的运动.
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
5 电磁感应中的能量转化与守恒.
电磁感应与力学问题.
什么是合力(resultant force)、
应试技巧指导二.
大学物理 电子教案 (电磁感应2).
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
专题达标测试 一、单项选择题 (每小题4分,共20分) 1.(2009·杭州市模拟二) P、Q是某电场中一条电场
乒乓球回滚运动分析 交通902 靳思阳.
习题课 阶段方法技巧训练(一) 专训2 切线的判定和性质 的四种应用类型.
第九章 理知识 第3单元 明考向 提能力 课堂考题 领悟 课下综合 提升. 第九章 理知识 第3单元 明考向 提能力 课堂考题 领悟 课下综合 提升.
第3讲 电磁感应定律的综合应用 考点1 电磁感应中的电路问题 路将产生感应电动势,该导体或回路就相当于电源,将它们接
第二课时 磁场对运动电荷的作用 金台区教研室 刘小刚
第3讲 专题 电磁感应的综合应用 一、电磁感应电路问题的理解和分类
7.4 磁场对运动电荷和载流导线的作用 带电粒子在电场中的运动 带电量为q,质量为m的带电粒子,在电场强度为E的电场中
电磁感应规律及应用 郴州市二中高三备课组.
第2讲 磁场对运动电荷的作用 1.洛伦兹力的大小 (1)v∥B时,洛伦兹力F= .(θ=0°或180°)
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
看一看,想一想.
磁场综合 版权所有—庞留根 ,.
物理思想方法与高考能力要求(九) 一、等效转化思想解决电磁感应电路问题
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
实数与向量的积.
线段的有关计算.
2.6 直角三角形(二).
必修1 第四章 牛顿第二定律的应用 --瞬时性问题 必修1 第四章 牛顿第二定律的应用--瞬时性问题
浅谈“模型”在电磁感应问题中的应用.
3.3 垂径定理 第2课时 垂径定理的逆定理.
第2课时 带电粒子在复合场中的运动 基 础 回 扣 1.电场与磁场比较
岱山实验学校欢迎你 岱山实验学校 虞晓君.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
注意:这里的F合为沿着半径(指向圆心)的合力
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
交变电流的产生和描述 平阳中学 王焕转.
物理思想方法与高考能力要求(八) 处理带电粒子在磁场中运动的临界极值思维方法
第八章 理知识 第2单元 明考向 提能力 课堂考题 领悟 课下综合 提升. 第八章 理知识 第2单元 明考向 提能力 课堂考题 领悟 课下综合 提升.
整体法隔离法 牛顿运动定律的应用 -----整体法、隔离法 ——物理教研组课程资源(肖翠峰提供)
质点运动学两类基本问题 一 由质点的运动方程可以求得质点在任一时刻的位矢、速度和加速度;
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
电磁感应中的能量问题 温21中 夏雪克.
第4讲 专题 带电粒子在复合场中的运动 一、复合场 复合场是指 、 和重力场并存,或其中某两场并存,或分区域存在. 电场 磁场.
2019年温州市二模分析会 以电磁感应为例 谈物理选考专题复习 温州中学 张延赐 /5/19.
第八章 磁 场 第3讲 带电粒子在复合场中的运动.
法拉第 (Michael Faraday, ),伟大的英国物理学家和化学家
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
2.2.1质点的动量及动量定理 2.2 动量 动量守恒定律 1. 冲量 力在时间上的积累,即冲量。 恒力的冲量 (t1 → t2): z
3.2 平面向量基本定理.
在直角坐標平面上兩點之間 的距離及平面圖形的面積
制作者:王翠艳 李晓荣 o.
带电粒子在匀强磁场中的运动 扬中市第二高级中学 田春林 2018年11月14日.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
庞留根.
高三二轮专题复习 专题一 物体的平衡类问题 苍南中学 陈 小飞 ◎.
Presentation transcript:

计算题训练二 (时间:90分钟,满分100分) 1.(2009·佛山市质量检测二)(14分)如图1甲所示, 空间存在竖直向上磁感应强度B=1 T的匀强磁 场,ab、cd是相互平行间距L=1 m的长直导轨,它们 处在同一水平面内,左边通过金属杆ac相连,质量 m=1 kg的导体棒MN水平放置在导轨上,已知MN与 ac的总电阻R=0.2 Ω,其它电阻不计.导体棒MN通 过不可伸长细线经光滑定滑轮与质量也为m的重物 相连,现将重物由如图所示的静止状态释放后与导 体棒MN一起运动,并始终保持导体棒与导轨接触 良好,已知导体棒与导轨间的动摩擦因数为μ=0.5,

其它摩擦不计,导轨足够长,重物离地面足够高,重力加速度g取10 m/s2. (1)请定性说明:导体棒MN在达到匀速运动前,速度和加速度是如何变化的;到达匀速运动时MN受到的哪些力合力为零;并在图乙中定性画出棒从静止到匀速的过程中所受的安培力大小随时间变化的图象(不需说明理由及计算达到匀速的时间). 图1

(2)若已知重物下降高度h=2 m时,导体棒恰好开始做匀速运动,在此过程中ac边产生的焦耳热Q=3 J,求导体棒MN的电阻值r. (2)导体棒MN匀速运动时,感应电动势E=BLv 所以感应电流I=

mg=BIL+μmg 代入数值联立上式解得 v= m/s=1 m/s 根据能量守恒得mgh=μmgh+Q总+ ·2mv2 即Q总=mgh(1-μ)-mv2=1×10×2×0.5 J-1×12 J=9 J ∵Q=I2Rt,而串联电路中电流相等 ∴ 解得r= ×0.2 Ω=0.13 Ω 答案 (1)见解析 (2)0.13 Ω

2.(2009·北京市东城区)(12分)如图2所示,竖直平 面xOy内存在水平向右的匀强电场,场强大小E= 10 N/C,在y≥0的区域内还存在垂直于坐标平面向 里的匀强磁场,磁感应强度大小B=0.5 T.一带电量 q=+0.2 C、质量m=0.4 kg的小球由长L=0.4 m的细 线悬挂于P点,小球可视为质点,现将小球拉至水平 位置A无初速度释放,小球运动到悬点P正下方的坐 标原点O时,悬线突然断裂,此后小球又恰好能通过 O点正下方的N点.(g=10 m/s2).求:

图2 (1)小球运动到O点时的速度大小. (2)悬线断裂前瞬间拉力的大小. (3)ON间的距离. 解析 (1)小球从A运动到O的过程中,根据动能定理 mgL-qEL= 得小球在O点速度为

v= =2 m/s (2)小球运动到O点悬线断裂前瞬间,对小球运用牛顿第二定律 T-mg-F洛= F洛=qvB 由以上两式得T=mg+qvB+ =8.2 N (3)悬线断后,小球水平方向加速度 a= =5 m/s2 小球从O点运动至N点所用时间 t= =0.8 s ON间距离h= =3.2 m 答案 (1)2 m/s (2)8.2 N (3)3.2 m

3.(2009·韶关市5月模拟)(14分) 如图3所示, MN、PQ为足够长 的平行导轨,间距L=0.5 m,导轨 平面与水平面间的夹角θ =37°, NQ⊥MN,NQ间连接有一个R=3 Ω的电阻.有一匀 强磁场垂直于导轨平面,磁感应强度为B0=1 T,将 一根质量为m=0.05 kg的金属棒ab紧靠NQ放置在 导轨上,且与导轨接触良好,金属棒的电阻r=2 Ω, 其余部分电阻不计.现由静止释放金属棒,金属棒 沿导轨向下运动过程中始终与NQ平行.已知金属棒 与导轨间的动摩擦因数μ=0.5,当金属棒滑行至cd 图3

处时速度大小开始保持不变,cd距离NQ为s=2 m.(g= 10m/s2,sin 37°=0.6,cos37°=0.8) (1)金属棒达到稳定时的速度是多大? (2)从静止开始直到达到稳定速度的过程中,电阻R上 产生的热量是多少? (3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻 起,让磁感应强度逐渐减小,可使金属棒中不产生感 应电流,则t=1 s时磁感应强度应为多大? 解析 (1)在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有 FA=B0IL

mgsinθ =FA+μmgcosθ E=B0Lv I= 由以上四式并代入数据得v=2 m/s (2)根据能量关系有 mgssinθ = mv2+μmgcosθ s+Q 电阻R上产生的热量QR= 解得QR=0.06 J (3)当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动 mgsinθ –μmgcosθ =ma 设t时刻磁感应强度为B,则

B0Ls=BL(s+x) x=vt+ 故t=1 s时磁感应强度B=0.4 T 答案 (1)2 m/s (2)0.06 J (3)0.4 T 4.(2009·江门市第二次模拟)(12分)如图4所示,水 平方向存在垂直纸面向里的有界匀强磁场,磁感应 强度为B,磁场的高度为2L,一不可伸长的轻绳一端 系在正方形单匝线圈ab边的中点,另一端跨过定滑 轮与重物相连,已知线圈的质量为m、边长为L,总 电阻为R;重物的质量是线圈的2倍,开始时线圈ab 边离磁场下边界距离为2L,现由静止开始同时释放

重物与线圈,整个过程中重物未落地,重力加速度为g,不计滑轮的质量、空气阻力及摩擦. (1)求ab边进入磁场的瞬间,绳上的张力T. (2)已知线圈向上运动进出磁场的两个边界的过程中运动情况完全相同,求线圈穿过磁场的整个过程中产生的焦耳热. 图4

解析 (1)设线圈ab边刚好进入磁场时,速度为v1,加速度为a,对两个物体组成的系统,根据机械能守恒得 2mg·2L-mg·2L= ab边上的感应电动势为E=BLv 线圈中的感应电流为I= ab边所受的安培力为F=BIL 设绳上的拉力为T,对重物与线圈分别利用牛顿第二定律可得 2mg-T=2ma T-F-mg=ma 联立以上几式可得

T= (2)设线圈的cd边刚好进入磁场时速度为v2,由于线圈向上运动进出磁场的两个边界过程的运动情况完全一样,故线圈ab边到达磁场上边界时的速度必定是v1,线圈cd边刚好出磁场时速度为v2.整个线圈在磁场中时,由机械能守恒有 2mgL-mgL= (2m+m)v12- (2m+m)v22 进入磁场时,由能量关系得 2mgL=mgL+ 联立解得Q=4mgL 答案 (1) (2)4mgL

5.(2009·宁德市质检)(12分)如图5所示,在直角坐 标系第Ⅰ、Ⅳ象限存在着与y轴正方向成30°角的 匀强电场E,在第Ⅱ象限存在着垂直于纸面向里的 匀强磁场. 图5

在第Ⅲ象限电子枪中的灯丝加热逸出的电子(初速度为零)经加速电场U0加速后进入粒子速度选择器,(速度选择器中磁感应强度与第Ⅱ象限的磁感应强度相同均为B,电场强度大小为E1)沿直线运动后在x轴上的a(-L,0)点以一定的速度垂直于x轴射入第Ⅱ象限的磁场偏转,然后经过y轴上的某点b,与y轴方向成60°角垂直电场E方向进入电场,经过y轴上的c点 (0, ).已知电子的电荷量为e,质量为m(不计重力),加速电场的电压为U0.求: (1)经加速电场U0加速后进入粒子速度选择器时,电子的速度大小? (2)匀强磁场的磁感应强度B的大小?

(3)速度选择器的电场强度E1的大小? (4)Ⅰ、Ⅳ象限中匀强电场的电场强度E的大小? 解析 (1)eU0= v0= (2)Rcos60°+R=L Bev0= 联立得B= (3)Bev0=eE1 E1= (4)s=Rsin 60°+ x=scos 60°=v0t

y=ssin 60°= 联立得E= 答案 6.(2009·深圳市5月第二次调研) (12分)如图6所示,平行于直角 坐标系y轴的PQ是用特殊材料 制成的,只能让垂直打到PQ界 面上的电子通过.其左侧有一直 角三角形区域,分布着方向垂直纸面向里、磁感 应强度为B的匀强磁场,其右侧有竖直向上场强为E 图6

的匀强电场. 现有速率不同的电子在纸面上从坐标原点O沿不同方向射到三角形区域,不考虑电子间的相互作用 的匀强电场.现有速率不同的电子在纸面上从坐标原点O沿不同方向射到三角形区域,不考虑电子间的相互作用.已知电子的电荷量为e,质量为m,在△OAC中,OA=a,θ =60°.求: (1)能通过PQ界面的电子所具有的最大速度是多少. (2)在PQ右侧x轴上什么范围内能接收到电子. 解析 (1)要使电子能通过PQ界面,电子飞出磁场的速度方向必须水平向右,由Bev= 可知,r越大v越大,从C点水平飞出的电子,运动半径最大,对应的速度最大,即r=2a时,电子的速度最大

由Bev= 得vm= (2)粒子在电场中做类平抛运动,据 a= x=vt 得xm=

由此可知PQ界面的右侧x轴上能接收电子的范围是 答案 7.(2009·南昌模拟)(12分)空间存在垂直于纸面方 向的均匀磁场,其方向随时间做周期性变化,磁感 应强度B随时间t变化的图线如图7甲所示.规定B>0 时,磁场方向穿出纸面.现在磁场区域中建立一与 磁场方向垂直的平面直角坐标系Oxy,如图乙所示. 一电荷量q=5π×10-7 C,质量m=5×10-10 kg的带正 电粒子,位于原点O处,在t=0时刻以初速度v0=

πm/s沿x轴正方向开始运动,不计重力作用,不计磁场变化可能产生的一切其他影响.求: (1)带电粒子的运动半径. (2)带电粒子从O点运动到P(4,4)点的最短时间. (3)要使带电粒子过图中的P点,则磁场的变化周期T为多少? 图7

解析 (1)设粒子运动半径为R,则 qvB= R= =0.01 m (2)设带电粒子的运动周期为T磁,则 T磁= =0.02 s 若磁场的变化周期 恰好为带电粒子运动的 ,即它的轨迹为4个 圆相连接,它的运动轨迹如下图所示,此种情况带电粒子从O点运动到P点所用的时间最短,设为t,则

t=T磁=0.02 s (3)要使带电粒子经过P点,则磁场变化的周期T和带电粒子在磁场中的运动周期T磁之间应满足的关系为 即T=0.04(n+ ) s(n=0,1,2,…) 答案 (1)0.01 m (2)0.02 s (3)0.04(n+ )s,(n=0,1,2,…)

8.(2009·深圳市5月第2次调研)(12分)如图8所示,N 匝矩形金属线圈的质量为m,电阻为R,放在倾角为 θ 的光滑斜面上,其ab边长度为L且与斜面底边平行, 与ab平行的两水平虚线MN、PQ之间,在t=0时刻加 一变化的磁场,磁感应强度B的大小随时间t的变化 关系为B=kt,方向垂直斜面向上.在t=0时刻将线圈 由图中位置静止释放,在t=t1时刻ab边进入磁场,t=t2 时刻ab边穿出磁场.线圈ab边刚进入磁场瞬间电流 为0,穿出磁场前的瞬间线圈加速度为0.(重力加速 度为g)求:

图8 (1)MN、PQ之间的距离d. (2)从t=0到t=t1运动过程中线圈产生的热量Q. (3)线圈的ab边在穿过磁场过程中克服安培力所做的功W. 解析 (1)当t=t1时,v1=at1=gsinθ t1 并由题意可知瞬间电流为0,得ε合=ε1-ε1′=0 而ε1=NB1Lv1,ε1′=

故NB1Lv1= 所以d=v1t1=gsinθ t12 (2)由ε1=NB1Lv1或ε1′= =NkLd 得I1= 所以Q=I12Rt1= (3)当t=t2时,由题意知mgsinθ -NB2I2L=0 设ab边穿出磁场瞬间的速度为v2,则有 ε2=NB2Lv2,I2= 所以v2=

由动能定理 mv22- mv12=mgdsinθ -W 得W= mg2sin2 θ(3t12- ) 答案 见解析 返回