例1一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的身高为1.65米,由此可推断出树高是 米.zxxk 3.3.

Slides:



Advertisements
Similar presentations
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
Advertisements

二次函数中的存在性问题(平行四边形).
相似三角形专题复习 ----几个常用基本图形的应用
市级个人课题交流材料 《旋转》问题情境引入的效果对比 高淳县第一中学 孔小军.
 第20讲 中国的交通.
第十二单元 第28讲 第28讲 古代中国的科技和文艺   知识诠释  思维发散.
利用定积分求平面图形的面积.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
北师大版数学 《旋转》系列微课 主讲:胡 选 单位:深圳市坪山新区光祖中学.
三角形的邊角關係 大綱:三角形邊的不等關係 三角形邊角關係 樞紐定理 背景知識:不等式 顧震宇 台灣數位學習科技股份有限公司.
同学们好! 肖溪镇竹山小学校 张齐敏.
第一学期课件 相似三角形性质 阳江学校 毛素云.
梯形的中位线.
习题课 阶段方法技巧训练(一) 专训1 三角形判定的 六种应用.
习题课 阶段方法技巧训练(一) 专训2 切线的判定和性质 的四种应用类型.
浙教版初中数学九年级(上) 4.6 图形的位似 初中数学资源网 龙港九中数学组.
第二十七章 相似 位似图形的概念、性质与画法
问题的由来 l 如图,在△ABC中,∠ACB=90º,AC=BC,直线l经过点C,且AD⊥l于D,BE⊥l于E.
12.3 角的平分线的性质 (第2课时).
如图,平行四边形ABCD,AC、BD相交于点O,过点O的EF与AD、BC交于E、F两点,OE与OF,相等吗?为什么?
第24讲 相似三角形 考点知识精讲 中考典例精析 举一反三 考点训练.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
28.1 锐角三角函数(2) ——余弦、正切.
初二上复习综合题集.
2.1.2 空间中直线与直线 之间的位置关系.
第二十七章 相 似 27.2 相似三角形 相似三角形的性质.
实数与向量的积.
线段的有关计算.
正方形 ——计成保.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
3.3圆心角(2).
八年级上册1.1-1.3复习之 三角形中线的应用.
三角形的中位线.
. 1.4 全等三角形.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
1.5 三角形全等的判定 第2课时 “边角边”与线段的垂直平分线的性质.
4.2 证明⑶.
3.3 垂径定理 第2课时 垂径定理的逆定理.
2.6 直角三角形(1).
例1.如图,已知:AB∥CD,∠A=70°∠DHE=70°,求证:AM∥EF
岱山实验学校欢迎你 岱山实验学校 虞晓君.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
抛物线的几何性质.
北师大版《数学》五年级上册 组合图形面积.
北师大版《数学》五年级上册 组合图形面积.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
13.3 等腰三角形 (第3课时).
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
4.3 相似多边形.
高中数学必修 平面向量的基本定理.
图形的面积.
4.6 图形的位似     观察思考:这两幅图片有什么特征? 都是有好几张相似图形组成,每个对应顶点都经过一点.
§19.1平行四边形(5) 三角形中位线 辽宁省鞍山市市第42中学 栾晓娜.
用向量法推断 线面位置关系.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
再认相似三角形 普陀二中 洪秀捷.
生活中的几何体.
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

例1一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的身高为1.65米,由此可推断出树高是 米.zxxk 3.3

变式1 数学兴趣小组测校内一棵树高 方法一:如图,把镜子放在离树(AB)8m点E处,然后沿着直线BE后退到D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.8m,观察者目高CD=1.6m; D E A B C

方法二:如图,把长为2.40m的标杆CD直立在地面上,量出树的影长为2.80m,标杆影长为1.47m。 F D C E B A www.1230.org 初中数学资源网

变式2 小明利用太阳光测量楼高.如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB. (结果精确到0.1m)

例2一块直角三角形木板的一条直角边AB长为1. 5m,面积z. x. x. k为1 例2一块直角三角形木板的一条直角边AB长为1.5m,面积z.x.x.k为1.5m2,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案,甲设计方案如图1,乙设计方案如图2.你认为哪位同学设计的方案较好?试说明理由.(加工损耗忽略不计,计算结果中可保留分数)

变式 如图,已知抛线与x轴交于A(-1,0)E(3,0)两点,与y轴交与(0,3) 1、求抛物线解析式 2、设抛物线顶点为D,求四边形AEDB的面积 M 3、ΔAOB与ΔDBE是否相似?如果相似,请给出证明,如果不相似,请给出理由. 4、在直线BE上方的抛物线上有一点M,使得△BEM的面积最大,求出点M的坐标. N

中考冲浪 1、手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是( )

2、如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )

3、如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是_____.Z..x..x..k