概率论 ( Probability) 2016年 2019年4月13日星期六.

Slides:



Advertisements
Similar presentations
第一章 、随机事件与概率 1.1 、随机事件 1.2 、随机事件的概率 1.3 、随机事件概率的计算 1.4 、伯努利概型.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
§5.2 中心极限定理 定理3(同分布中心极限定理)设随机变量X1, X2, …, Xn, …相互独立,服从相同分布,且有有限的数学期望和方差,即: E(Xk) =,D(Xk) =2,k = 1, 2, … 则随机变量 的分布函数Fn(x)满足: 对任意的x,有.
离散随机变量及分布律 定义 个或可列个, 则称 X 为离散型随机变量 描述X 的概率特性常用概率分布或分布律 即 X 或 P §2.2
§2.2 离散型随机变量及其分布 离散型随机变量的概念 定义 若随机变量 的可能取值是有限多个或无穷可列多个,则称 为离散型随机变量.
第四章 随机变量的数字特征 随机变量的分布是对随机变量的一种完整的描述,知道随机变量的分布就全都知道随机变量的所有特征。然后随机变量的概率分布往往不容易求得的。 随机变量的这些统计特征通常用数字表示的。这些用来描述随机变量统计性的数字称为随机变量的数字特征。其中最重要的是数学期望(均值)和方差二种。
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
第四章 概率、正态分布、常用统计分布.
第三章 函数逼近 — 最佳平方逼近.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
08-09冬季学期 概率论与数理统计 姜旭峰,胡玉磊.
《高等数学》(理学) 常数项级数的概念 袁安锋
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
本讲义可在网址 或 ftp://math.shekou.com 下载
2-7、函数的微分 教学要求 教学要点.
第四章 随机变量的数字特征 第一节 数学期望 第二节 方差 第三节 协方差及相关系数 第四节 矩、协方差矩阵.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第6章 统计量及其抽样分布 统计量 关于分布的几个概念 由正态分布导出的几个重要分布 样本均值的分布与中心极限定理 样本比例的抽样分布
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
第五章:随机变量的收敛性 随机样本:IID样本 , 统计量:对随机样本的概括 收敛性:当样本数量n趋向无穷大时,统计量的变化
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
数据统计与分析 秦 猛 南京大学物理系 手机: 第十讲 数据统计与分析 秦 猛 南京大学物理系 办公室:唐仲英楼A 手机:
概 率 统 计 主讲教师 叶宏 山东大学数学院.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
概 率 统 计 主讲教师 叶宏 山东大学数学院.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第5章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理.
复习.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§5.2 中心极限定理 人们已经知道,在自然界和生产实践中遇到的大量随机 变量都服从或近似服从正态分布,正因如此,正态分布占有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第三章 随机变量的数字特征 (一)基本内容 一、一维随机变量的数学期望 定义1:设X是一离散型随机变量,其分布列为:
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4.3 中心极限定理 一、问题的引入 二、基本定理 三、典型例题 四、小结.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第二节 中心极限定理 一、问题的引入 二、基本定理 三、典型例题 四、小结.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第 四 章 大 数 定 理 与 中 心 极 限 定 理.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
定义 设连续型随机变量 概率密度为 分布函数是 特别地, 其概率密度为 一、正态分布的相关内容:.
难点:连续变量函数分布与二维连续变量分布
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
数理统计基本知识.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§4.1数学期望.
第五章 大数定律和中心极限定理 关键词: 马尔可夫不等式 切比雪夫不等式 大数定律 中心极限定理.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

概率论 ( Probability) 2016年 2019年4月13日星期六

第五章 大数定律和中心极限定理 大数定律:对于随机变量序列 在什么条件下以什么形 描述其平均值 式呈现出稳定性。 第五章 大数定律和中心极限定理 本章是关于随机变量序列的极限理论。 大数定律:对于随机变量序列 在什么条件下以什么形 描述其平均值 式呈现出稳定性。 中心极限定理:对于随机变量序列 其部分和 在什么条件下以正态分布为极限 分布。

§5.1 大数定律 一、切比雪夫不等式 二、依概率收敛的概念 三、几个常见的大数定律

一 切比雪夫不等式 一阶原点矩 二阶中心矩

注:①由切比雪夫不等式可得 可见D(X) 越小,事件 的概率越接近1。 X 的值密集在其数学期望附近的概率越大。 不等式体现了方差 D(X) 的概率意义——它是描述随机变量 X 的取值与其数学期望值 E(X) 的离散程度的量。 ② 当 随机变量 X 的数学期望 E(X) 和方差 D(X) 已知,而其分布未知的情况下,利用切比雪夫不等式,可以对事件 { |XE(X |)<  } (其中  是任意的小正数)发生的概率给出一个初步的估计。

例如,取 ,则有 即无论 随机变量 X 服从什么样的分布,其取值落入以其数学期望 EX 为中心,以其 3 倍的标准差 为半径的邻域 ( EX ,EX+ )内的概率都不小于 89% 。

已知正常男性成人血液中,每一毫升白细胞数 例1 平均是7300,均方差是700,利用切比雪夫不等式 估计每毫升白细胞数在 5200~9400 之间的概率 . 解 设每毫升白细胞数为X 依题意,EX =7300,DX =7002 所求为 由切比雪夫不等式 即每毫升白细胞数在5200-9400之间的概率不小于8/9。

二、依概率收敛 依概率收敛于a ,记为 设随机变量序列 有: 则称 ,如果存 在常数 a ,使得对于任意 定义 注意 :

意思是:当 时, Xn落在 内的概率越来越大.即 a 极有可能 而 意思是: , 当 必定

三 几个常见的大数定律

1 伯努里大数定律 设 nA 是 n 重伯努利试验中事件A 发生的次数, p 是每次试验中 A 发生的概率, 则 有 根据切比雪夫不等式,

2 切比雪夫大数定律 切比雪夫

切比雪夫大数定律说明:在定理的条件下,当n充分大时,n个独立随机变量的算术平均数这个随机变量的离散程度是很小的 切比雪夫大数定律说明:在定理的条件下,当n充分大时,n个独立随机变量的算术平均数这个随机变量的离散程度是很小的.这意味着只要n充分大,尽管n个随机变量可以各有其分布,但其算术平均以后得到的随机变量 将比较密地聚集在它的数学期望 的附近,不再为个别随机变量所左右.作为切比雪夫大数定律的特例,我们有下面的推论.

推论.

5.2 中心极限定理 一、列维-林德伯格中心极限定理 二、棣莫佛-拉普拉斯中心极限定理

§5.2中心极限定理 在第二章,我们学了两个随机变量分布的极限分布的例子: , 则对固定的 k,有 (2)Possion定理: 本节中我们要继续学习极限分布问题。

例2 一枚均匀的骰子连掷 n 次,点数之和为 = 第k 次出现的点数, k =1,2,…,n 分布函数 分布律

2 3 4 5 6 7 8 9 10 11 12 P 分布律 分布函数

分布函数 分布律

分布函数 分布律

? 实际背景 在现实中为什么很多数量指标都服从或近似服从正态分布 研究发现这些指标通常是由大量相互独立的随机因素综合影响而成,即 中心极限定理研究: 当 时,在什么情况下 的极限分布是正态分布? 标准化 的极限分布是 ?

概率论中,把在一定条件下大量独立随机变量和的分布以正态分布为极限的这一类定理,称为中心极限定理。

则 服从中心极限定理。即标准化 一 列维-林德伯格中心极限定理 设随机变量序列X1, X2,…, Xn, … 独立同分布,且 一 列维-林德伯格中心极限定理 设随机变量序列X1, X2,…, Xn, … 独立同分布,且 则 服从中心极限定理。即标准化 即“若随机变量序列满足①独立同分布,且②期望与方差存在,则服从中心极限定理”。

例3 设有30个电子元件,它们的寿命均服从参数为0.1的指数分布(单位:小时),每个元件工作相互独立,求他们的寿命之和超过350小时的概率. 解 由列维-林德伯格中心极限定理

标准正态分布表 他们的寿命之和超过350小时 即他们的寿命之和超过350小时的概率为0.1814

例4 售报员在报摊上卖报, 已知每个过路人在报摊上买报的概率为1/3 例4 售报员在报摊上卖报, 已知每个过路人在报摊上买报的概率为1/3. 令X 是出售了100份报时过路人的数目,求 P (280  X  320). 解 令Xi 为售出了第 i – 1 份报纸后到售出第i 份报纸时的过路人数, i = 1,2,…,100 相互独立, 由列维中心极限定理, 有

由于 二、棣莫佛-拉普拉斯中心极限定理 证明 棣莫弗-拉普拉斯中心极限定理是棣莫弗于1730年给出的概率论历史上第一个中心极限定理.在此后的大约200年中,有关对独立随机变量和的极限分布的讨论一直是概率论研究的中心,故称为“中心极限定理”.

例5 某工厂有200台同类型的机器,每台机器工作时需 要的电功率为1千瓦,由于工艺等原因,每台机器的实 际工作时间只占全部工作的75%,各台机器工作是相互 独立的,求: (1)任一时刻有144至160台机器正在工作的概率. (2)至少需要供应多少电功率可以保证该厂不会因为供电不足而影响生产的概率不少于0.99. n =200,p =0.75,q =0.25,np =150,npq =37.5 解 (1)设随机变量X表示200台任一时刻正在工作的机器的台数, 则 X ~ B(200,0.75) . 由棣莫佛-拉普拉斯中心极限定理, 有

(1)任一时刻有144至160台机器正在工作的概率.

(2)设任一时刻正在工作的机器的台数不超过m,则 查标准正态函数分布表,得 由3 原则知,

例6 对于一个学生而言,来参加家长会的家长人 例6 对于一个学生而言,来参加家长会的家长人 数是一个随机变量,设一个学生无家长、1名家长、 2名家长来参加会议的概率分别为0.05、0.8、0.15.若 学校共有400名学生,设各学生参加会议的家长数相互 独立,且服从同一分布. 求参加会议的家长数X超过450的概率. (2) 求有1名家长来参加会议的学生数不多于340的概率.

解 (1) 以Xk ( k=1,2,…,400 )记第k个学生来参加会议 的家长数,其分布律为 1 Xk 2 pk 0.05 0.8 0.15 Xk 相互独立地服从同一分布 近似服从标准正态分布 则随机变量

(2) 以Y表示有一名家长来参加会议的学生数, 则 Y~B(400, 0.8) 由棣莫佛-拉普拉斯中心极限定理, 有