縮放及相似形 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,

Slides:



Advertisements
Similar presentations
工職數學 第四冊 第一章 導 數 1 - 1 函數的極限與連續 1 - 2 導數及其基本性質 1 - 3 微分公式 1 - 4 高階導函數.
Advertisements

大綱 1. 三角函數的導函數. 2. 反三角函數的導函數. 3. 對數函數的導函數. 4. 指數函數的導函數.
中垂線之尺規作圖與性質 公館國中 蘇柏奇老師 興華高中 馬鳳琴老師 興華高中 游淑媛老師. 2 中垂線的尺規作圖 作法: 已知: 求作: 的中垂線 Q : 直線 CD 真的是中垂線嗎 ? A B C D 1. 以 A 為圓心,適當長為半徑劃弧 2. 以 B 為圓心,相同長度為半徑劃弧 兩弧相交於 C,D.
北大附中深圳南山分校 倪 杰 2016年8月25日星期四 2016年8月25日星期四 2016年8月25日星期四 Ox y 1 1 y=a x (a>1)
變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
浙江省深化高校考试招生制度综合改革试点方案(2017新方案)
圓的一般式 內容說明: 由圓的標準式展出圓的一般式.
第 3 章 方程與圖像.
3-2 條件不等式 解一元 n 次不等式 二元一次不等式的圖解法 函數的極植.
圓的一般式 內容說明: 由圓的標準式展出圓的一般式.
1-2 解二元一次聯立方程式 主題一:二元一次聯立方程式 主題二:代入消去法 主題三:加減消去法 重點整理 新竹縣立湖口國民中學
摇摆的中东地区 永嘉县实验中学 张 杰.
摇摆的中东地区 永嘉县实验中学 张 杰.
明愛屯門馬登基金中學 多邊形的種類及內角和 中二級數學科.
旅游资源与开发 刘旭玲 旅游资源与开发.
问题解决与创造思维 刘 国 权 吉林省高等学校师资培训中心.
第四单元 自觉依法律己 避免违法犯罪.
大綱: 正比 反比 應用問題 顧震宇 台灣數位學習科技股份有限公司
5.1 自然對數函數:微分 5.2 自然對數函數:積分 5.3 反函數 5.4 指數函數:微分與積分 5.5 一般底數的指數函數和應用 5.6 反三角函數:微分 5.7 反三角函數:積分 5.8 雙曲函數.
點及直線與圓的關係 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
銳角三角函數的定義 授課老師:郭威廷.
下列敘述正確的打「○」,錯誤的打「×」。 ( )兩個等腰直角三角形一定相似。 ( )兩個梯形一定相似。 ( )兩個正六邊形一定相似。
三角形三心 重點整理.
大綱: 方程式的解及其圖形 直線方程式 聯立方程式的圖形 顧震宇 台灣數位學習科技股份有限公司
THE CHINESE UNIVERSITY OF HONG KONG EDD 5161R
搭配頁數 P.35 比例式 1.比的前項、後項與比值:    .
----直線運動 應用力學by志伯 ----直線運動
第一章 直角坐標系 1-3 函數圖形.
弦切角、圓內角及圓外角 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
15.5 最大值和最小值 的問題 附加例題 9 附加例題 10 © 文達出版 (香港 )有限公司.
圓心角及圓周角 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
知识点二 国际环境法的实施.
箏形及梯形 大綱:箏形 (兩組鄰邊等長) 梯形 (一組對邊平行) 顧震宇 台灣數位學習科技股份有限公司.
中二級數學科 畢氏定理.
弦切角 弦 B O 為夾 的弦切角 切線 A C 切點 顧震宇老師 台灣數位學習科技股份有限公司.
大綱:加減法的化簡 乘除法的化簡 去括號法則 蘇奕君 台灣數位學習科技股份有限公司
微積分網路教學課程 應用統計學系 周 章.
做做看。 5 算出塗色部分周長及面積。 1 (2+4)×2=12 2×4=8 12+8=20.
圓的定義 在平面上,與一定點等距的所有點所形成的圖形稱為圓。定點稱為圓心,圓心至圓上任意一點的距離稱為半徑,「圓」指的是曲線部分的圖形,故圓心並不在圓上.
教材來源:翰林數學第九冊五上第二單元面積
大綱: 方程式的解與圖形 畫方程式的圖形 方程式圖形的平移 聯立方程式的解與圖形 蘇德宙 台灣數位學習科技股份有限公司
( )下列各圖中何者的L1與L2會平行? C 答 錯 對 (A) (B) (C) (D)
1-2 相似三角形 ● 平行線截比例線段性質:兩條直線 M1、M2 被另一組平行線 L1//L2//L3 所截出來的截線段會成比例。
圖解配方法 張美玲老師製作.
小 學 四 年 級 數 學 科 正方形和長方形的面積.
第一章 直 線 ‧1-3 二元一次方程式的圖形.
體積.
AAA相似性質與AA相似性質 SAS相似性質 SSS相似性質
正弦公式和餘弦公式  正弦公式 餘弦公式 c2 = a2 + b2 – 2abcosC 或.
大綱: 縮放的定義及性質 相似形的定義及性質 顧震宇 台灣數位學習科技股份有限公司
相似三角形的應用 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
大綱: 比與比值 比例式及其性質 應用問題 顧震宇 台灣數位學習科技股份有限公司
7.3 餘弦公式 附加例題 3 附加例題 4.
在國一「放大圖與縮小圖」的單元中,我們知道放大圖或縮小圖與原圖之間,有什麼的關係呢?
(a+b)(c+d)=ac+ad+bc+bd
例題 1. 多項式的排列 1-2 多項式及其加減法 將多項式 按下列方式排列: (1) 降冪排列:______________________ (2) 升冪排列:______________________ 排列 降冪:次數由高至低 升冪;次數由低至高.
4-2二元一次方程式的圖形 授課老師:黃韋欽 上課教材:南一版.
( )下列何者正確? (A) 7< <8 (B) 72< <82 (C) 7< <8 (D) 72< <82 C 答 錯 對.
線型函數 李惠菁 製作 1.變數與函數 2. 線性函數及其圖形 3. 單元測驗.
第一章 直角坐標系 1-3 函數及其圖形.
1 試求下列三角形的面積: 在△ABC中,若 , ,且∠B=45° 在△PQR中,若 , ,且∠R=150° (1) △ABC面積 。
4-1 變數與函數 第4章 一次函數及其圖形.
在△ABC 與△DEF 中,∠B=∠E=65°,∠A=57°,∠F=58°,請問兩個三角形是否相似?為什麼?
在直角坐標平面上兩點之間 的距離及平面圖形的面積
解下列各一元二次方程式: (1)(x+1)2=81 x+1=9 或 x+1=-9 x=8 或 x=-10 (2)(x-5)2+3=0
5.2 弧度法 附加例題 1 附加例題 2.
以下是一元一次方程式的有________________________________。
8.3 分點公式 附加例題 2 附加例題 3 © 文達出版 (香港 )有限公司.
一元二次方程式 (應用問題) 顧震宇 台灣數位學習科技股份有限公司.
Presentation transcript:

縮放及相似形 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析, 其中包含函數定義相關問題,主要是判斷兩個變數是否為函數關係的問題, 還有關於函數值的問題,最後講解有關函數相關的應用問題。

例題 1. (縮放) 如圖,小明自製了一個簡易的幻燈片播放機,幻燈片與屏幕平行, 縮放及相似形 - 題型解析 如圖,小明自製了一個簡易的幻燈片播放機,幻燈片與屏幕平行, 光源到幻燈片的距離為 30 公分,幻燈片到屏幕的距離為 1.5 公尺, 幻燈片上的線條為 10 公分,則屏幕上線條的長度為多少公分 ? 光源 幻燈片 屏幕 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 30 cm 1.5 m 縮放 縮放前後的線段 形成比例線段 [解答] 60 公分 顧震宇 老師 台灣數位學習科技股份有限公司

例題 2. (縮放) 如圖, 為 以 O 點為中心的縮小圖,且 , ,求 F A E O D B C 平面圖形縮放 縮放及相似形 - 題型解析 如圖, 為 以 O 點為中心的縮小圖,且 , ,求 F A E O D B C 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 平面圖形縮放 縮放前後: (1) 對應邊互相平行 且成比例 (2) 對應角相等 [解答] 顧震宇 老師 台灣數位學習科技股份有限公司

例題 3. (相似性質) 若四邊形 ABCD ~ 四邊形 EFGH,且 , ,已知 ,求 多邊形相似 縮放及相似形 - 題型解析 若四邊形 ABCD ~ 四邊形 EFGH,且 , ,已知 ,求 多邊形相似 兩個多邊形相似: (1) 對應邊成比例 (2) 對應角相等 (3) 周長比等於 對應邊長比 比例分配 將數值 M 按照 a:b:c 分為三部份, 則三部份分別為 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 [解答] 140 度 顧震宇 老師 台灣數位學習科技股份有限公司

例題 4. (相似性質) 已知 ,且 , , , , ,求 (1) (2) 的周長為何 ? (不合) 多邊形相似 縮放及相似形 - 題型解析 已知 ,且 , , , , ,求 (1) (2) 的周長為何 ? 多邊形相似 兩個多邊形相似: (1) 對應邊成比例 (2) 對應角相等 (3) 周長比等於 對應邊長比 (不合) 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 [解答] (1) 4 (2) 24 顧震宇 老師 台灣數位學習科技股份有限公司

例題 5. (相似性質綜合應用) 五邊形 ABCDE ~ 五邊形 ,若 , , , , ,ABCDE 的周長為 30,求 縮放及相似形 - 題型解析 五邊形 ABCDE ~ 五邊形 ,若 , , , , ,ABCDE 的周長為 30,求 (1) (2) (3) 的周長=? 多邊形相似 兩個多邊形相似: (1) 對應邊成比例 (2) 對應角相等 (3) 周長比等於 對應邊長比 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 [解答] (1) 25 度 (2) 8 (3) 20 顧震宇 老師 台灣數位學習科技股份有限公司

例題 6. (相似判別性質) 將下表中一定正確的項目打勾: 對應角相等 對應邊成比例 相似 (1) 兩個菱形 (2) 兩個大小不同的正方形 縮放及相似形 - 題型解析 將下表中一定正確的項目打勾: 對應角相等 對應邊成比例 相似 (1) 兩個菱形 (2) 兩個大小不同的正方形 (3) 菱形和正方形 (4) 長方形和正方形 (5) 兩個大小不同的正六邊形 (6) 兩個長方形 (7) 兩個平行四邊形 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 相似判別性質 若兩個多邊形滿足 (1) 對應角相等 且 (2) 對應邊成比例 則兩多邊形相似 顧震宇 老師 台灣數位學習科技股份有限公司

例題 1. (縮放) 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 縮放及相似形 - 題型解析 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 求三角形 ABC 面積為何 ? 三角形面積關係 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 三角形底相等, 面積比=高的比。 三角形高相等, 面積比=底的比。 [解答] 18 平方單位 顧震宇 老師 台灣數位學習科技股份有限公司

例題 1. (縮放) 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 縮放及相似形 - 題型解析 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 求三角形 ABC 面積為何 ? 三角形面積關係 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 三角形底相等, 面積比=高的比。 三角形高相等, 面積比=底的比。 [解答] 18 平方單位 顧震宇 老師 台灣數位學習科技股份有限公司

例題 1. (縮放) 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 縮放及相似形 - 題型解析 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 求三角形 ABC 面積為何 ? 三角形面積關係 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 三角形底相等, 面積比=高的比。 三角形高相等, 面積比=底的比。 [解答] 18 平方單位 顧震宇 老師 台灣數位學習科技股份有限公司

例題 1. (縮放) 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 縮放及相似形 - 題型解析 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 求三角形 ABC 面積為何 ? 三角形面積關係 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 三角形底相等, 面積比=高的比。 三角形高相等, 面積比=底的比。 [解答] 18 平方單位 顧震宇 老師 台灣數位學習科技股份有限公司

例題 1. (縮放) 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 縮放及相似形 - 題型解析 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 求三角形 ABC 面積為何 ? 三角形面積關係 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 三角形底相等, 面積比=高的比。 三角形高相等, 面積比=底的比。 [解答] 18 平方單位 顧震宇 老師 台灣數位學習科技股份有限公司

例題 1. (縮放) 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 縮放及相似形 - 題型解析 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 求三角形 ABC 面積為何 ? 三角形面積關係 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 三角形底相等, 面積比=高的比。 三角形高相等, 面積比=底的比。 [解答] 18 平方單位 顧震宇 老師 台灣數位學習科技股份有限公司

例題 1. (縮放) 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 縮放及相似形 - 題型解析 三角形 ABC 中,在 上取一點 E,使 , 在 上取一點 F,使 ,若 的面積為 3, 求三角形 ABC 面積為何 ? 三角形面積關係 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 三角形底相等, 面積比=高的比。 三角形高相等, 面積比=底的比。 [解答] 18 平方單位 顧震宇 老師 台灣數位學習科技股份有限公司

重點整理 已知 x, y 的和為 6,且 x 的 2 倍比 y 的 3 倍多 2,求 x, y x + y = 6 …….. (1) 二元一次方程式的圖形-題型解析 已知 x, y 的和為 6,且 x 的 2 倍比 y 的 3 倍多 2,求 x, y x + y = 6 …….. (1) 2x = 3y + 2 ….. (2) 聯立方程式的解 在聯立方程式中,x, y 的值 同時滿足每一個方程式的解 解聯立方程式 將兩個變數化簡成一元一次式後 求得其中一個變數的值 1. 代入消去法 2. 加減消去法 解的情形 一組解、無解 or 無限多組解 x - 2y = 1 x + y = 13 x = 2y + 1 -) 2y + 1 + y = 13 -3y = -12 x + y = 2 2x + 2y = 4 x + y = 4 x + y = 8 顧震宇 老師 台灣數位學習科技股份有限公司