3.3 垂径定理 第2课时 垂径定理的逆定理.

Slides:



Advertisements
Similar presentations
生物学 新课标(SK).
Advertisements

必修2 第一单元 古代中国经济的基本结构和特点
第二章 复式记账原理*** 主要内容、重点难点: 1.会计要素与会计等式*** 2.会计科目与账户*** 3. 借贷记账法***
2011年10月31日是一个令人警醒的日子,世界在10月31日迎来第70亿人口。当日凌晨,成为象征性的全球第70亿名成员之一的婴儿在菲律宾降生。 ?
江苏省2008年普通高校 招生录取办法 常熟理工学院学生处
氧气的制法 装置 原理 练习 随堂检测.
文明史观 文明史观,通常被称为文明史研究范式,是研究历史的一种理论模式。人类社会发展史,从本质上说就是人类文明演进的历史。
相似三角形专题复习 ----几个常用基本图形的应用
1、分别用双手在本上写下自己的名字 2、双手交叉
南美洲 吉林省延吉一高中 韩贵新.
初级会计实务 第八章 产品成本核算 主讲人:杨菠.
2007年11月考试相关工作安排 各考试点、培训中心和广大应考人员:
中考阅读 复习备考交流 西安铁一中分校 向连吾.
主题一 主题二 模块小结与测评 主题三 考点一 主题四 考点二 主题五 考点三 主题六 考点四 命题热点聚焦 考点五 模块综合检测 考点六.
分式的乘除(1) 周良中学 贾文荣.
第四章 制造业企业 主要经济业务核算.
《思想品德》七年级下册 教材、教法与评价的交流 金 利 2006年1月10日.
财经法规与会计职业道德 (3) 四川财经职业学院.
中央广播电视大学开放教育 成本会计(补修)期末复习
第三章 《圆》复习 第二课时 与圆有关的位置关系
人教版义务教育课程标准实验教科书 小学数学四年级上册第七单元《数学广角》 合理安排时间 248.
第三单元 发展社会主义民主政治.
市级个人课题交流材料 《旋转》问题情境引入的效果对比 高淳县第一中学 孔小军.
3.3 资源的跨区域调配 ——以南水北调为例 铜山中学 李启强.
我国三大自然区.
第十二单元 第28讲 第28讲 古代中国的科技和文艺   知识诠释  思维发散.
第6讲 近代中国的新方向—— 五四运动至新中国成立.
中考语文积累 永宁县教研室 步正军 2015.9.
小学数学知识讲座 应用题.
勾股定理 说课人:钱丹.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
北师大版数学 《旋转》系列微课 主讲:胡 选 单位:深圳市坪山新区光祖中学.
倒装句之其他句式.
江苏省2009年普通高校 招生录取办法 江苏省教育考试院
第 22 课 孙中山的民主追求 1 .近代变法救国主张的失败教训: “师夷之长技以制 夷”“中体西用”、兴办洋务、变法维新等的失败,使孙中山
《美国的两党制》选考复习 温州第二高级中学 俞优红 2018年6月14日 1.
习题课 阶段方法技巧训练(一) 专训2 切线的判定和性质 的四种应用类型.
人教版数学四年级(下) 乘法分配律 单击页面即可演示.
12.3 角的平分线的性质 (第2课时).
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
正方形 ——计成保.
2.6 直角三角形(二).
北师大版八年级(上) 第五章 位置的确定 5.2 平面直角坐标系(3).
3.3圆心角(2).
. 1.4 全等三角形.
一个直角三角形的成长经历.
熔化和凝固.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
3.4 圆心角(1).
1.5 三角形全等的判定 第2课时 “边角边”与线段的垂直平分线的性质.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
基础会计.
抛物线的几何性质.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
13.3 等腰三角形 (第3课时).
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
直线和圆的位置关系 ·.
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
3.4圆周角(一).
第八节 算术运算符和算术表达式.
直线的倾斜角与斜率.
第2节 大气的热力状况 基础知识回顾 重点难点诠释 经典例题赏析.
畢氏定理(百牛大祭)的故事 張美玲 製作 資料來源:探索數學的故事(凡異出版社).
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
第八章 繪圖技巧.
102年人事預算編列說明 邁向頂尖大學辦公室製作.
Presentation transcript:

3.3 垂径定理 第2课时 垂径定理的逆定理

第2题图 第1题图 1.(4分)如图,CD是⊙O的直径,AB是弦,AB与CD相交于点M,若要得到CD⊥AB,则还需添加的条件是 ( ) A.OC=AB B.OC=AM C.OM=CM D.AM=BM 2.(4分)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于 ( ) A.8 B.2 C.10 D.5 D D 第2题图 第1题图

B

7.(4分)如图所示,在平面直角坐标系中,已知一圆弧过正方形网格的格点A,B,C,已知A点的坐标为(-3,5),B点的坐标为(1,5),C点的坐标为(4,2),则该圆弧所在圆的圆心坐标为 . (-1,0)

C 第10题图 第11题图

14.(15分)如图甲所示,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点……最后一个△AnBnCn的顶点Bn,Cn在⊙O上. (1)如图乙,当n=1时,求正三角形的边长a1; (2)如图丙,当n=2时,求正三角形的边长a2; (3)如图甲,求正三角形的边长an(用含n的代数式表示).