第五章 多总体的统计检验.

Slides:



Advertisements
Similar presentations
第五章 假设检验 Hypothesis Testing 数理统计课题组. 本章大纲 1. 假设检验的基本概念 2.Neyman-Pearson 范式 3. 和假设检验有关的两个问题 4. 广义似然比检验 5. 单样本检验的几个实例 6. 两个样本的比较 7. 实验设计.
Advertisements

主编 周仁郁. 4.1 非参数检验 配对秩和检验( Wilcoxon 法) 不依赖总体分布类型, 也不对总体参数进行统计推 断的假设检验, 称为非参数检验 配对资料比较时,H 0 为差值总体中位数 M d = 0 H 0 成立时, 配对数据的差值服从以 0 为中心的对称 分布. 把差值按绝对值从小到大用.
7.1 假设检验 1. 假设检验的基本原理 2. 假设检验的相关概念 3. 假设检验的一般步骤 4. 典型例题 5. 小结.
第四章 假设检验 第4.1节 假设检验的基本概念 第4.2节 正态总体均值与方差 的假设检验 第4.3节 非参数假设检验方法
第十二章 非参数检验 (Nonparametric test)
吴志强 信息管理学院 讲座:SPSS使用方法 吴志强 信息管理学院
第八章 秩转换的非参数检验 (Nonparametric Test)
壹、資料分析程序 一、資料整理 (一)初步檢查 1.答案的完全性 2.字跡 3.抽樣與訪問的正確性 4.答案的一致性 5.答案的明確性
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
第十章 基于秩次的非参数检验.
第六章 样本及抽样分布 简单随机抽样: 代表性: 中每一个与所考察的总 体有相同的分布。 2.独立性: 是相互独立的随机变量。
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
设计调查 Design Investigation 张煜
第六章 方差分析 (Analysis of Variance,ANOVA)
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
完全随机设计多样本资料秩和检验.
第 8 章 假设检验 作者:中国人民大学统计学院 贾俊平 PowerPoint 统计学.
第十一章 非参数检验 (nonparametric test).
第四章 多样本分类数据模型 在参数检验中,我们常常对三个或三个以上的总体的均值进行相等性检验,使用的方法是方差分析,在非参数分析中也会遇到同样的问题,检验多个总体的分布是否相同。更严密的说,当几个总体的分布相同的条件下,讨论其位置参数是否相等。方差分析过程需要假定条件,F检验才有效。可有时候所采集的数据常常不能满足这些条件,像多样本比较时一样,我们不妨尝试将数据转化为秩统计量,因为秩统计量的分布与总体分布无关,可以摆脱总体分布的束缚。秩方法在方差分析中的应用。
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第三篇 医学统计学方法. 第三篇 医学统计学方法 医学统计学方法 实习2 主讲人 陶育纯 医学统计学方法 实习2 主讲人 陶育纯 流行病与卫生统计学教研室
本讲义可在网址 或 ftp://math.shekou.com 下载
不确定度的传递与合成 间接测量结果不确定度的评估
成组设计两样本均数的比较 赵耐青 卫生统计教研室.
区间估计 Interval Estimation.
第11章 秩转换的非参数检验 (nonparametric test).
第一节 单因素方差分析 第二节 双因素方差分析 第三节 正交实验设计及方差分析
第6章 统计量及其抽样分布 统计量 关于分布的几个概念 由正态分布导出的几个重要分布 样本均值的分布与中心极限定理 样本比例的抽样分布
常用的统计检验 作者 Dr. Maria Correa-Prisant 翻译 lvruiqin(DXY)
第十六章 無母數統計.
第6章 方差分析 ANOVA The Analysis of Variance
第13章 有序分类变量的统计推断——非参数检验
4
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
2019/1/12 GDP设计协同 超级管理员操作手册 GDP项目组.
第十章 方差分析.
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
第三篇 医学统计学方法. 第三篇 医学统计学方法 医学统计学方法 实习3 主讲人 陶育纯 医学统计学方法 实习3 主讲人 陶育纯 流行病与卫生统计学教研室
第七章 参数估计 7.3 参数的区间估计.
医学统计学方法 实习3 主讲人 陶育纯 医学统计学方法 实习3 主讲人 陶育纯
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
模型分类问题 Presented by 刘婷婷 苏琬琳.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
数理统计建模 林秋.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
門徒的信心-路8:22-25 你的信心在哪裏? 4月5-6日沙田圍堂  連俊才牧師.
非参数检验 电子工业出版社.
完全随机设计多组资料的比较 赵耐青 卫生统计教研室.
6.4 你有信心吗?.
第4课时 绝对值.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第四节 多个样本均数的两两比较 多个样本均数的两两比较又称多重比较(multiple comparison),其目的是推断究竟哪些总体均数之间存在差别。
静定结构位移计算 ——应用 主讲教师:戴萍.
分数再认识三 真假带分数的练习课.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
概率论与数理统计B.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
第八章 假设检验 8.1 假设检验的基本概念.
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
Statistical Methods in Medicine
第十五讲 区间估计 本次课讲完区间估计并开始讲授假设检验部分 下次课结束假设检验,并进行全书复习 本次课程后完成作业的后两部分
第八章 假设检验 8.3 两个正态总体参数的假设检验.
基于列存储的RDF数据管理 朱敏
单样本检验.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

第五章 多总体的统计检验

本章内容

多总体的统计检验 多总体检验问题:

Kruskal-Wallis单因素方差分析 基本原理:类似处理两个样本相关性位置检验的W-M-W方法类似,将多个样本混合起来求秩,如果遇到打结的情况,采用平均秩,然后再按样本组求秩和。

检验方法 计算第j组的样本平均秩: 对秩仿照方差分析原理:得到Kruskal-Wallis的H统计量:

对比其中每两组差异 对比其中每两组差异的时候,用Dunn(1964)年提出用: 其中 如果 那么表示i和j两组之间存在差异, , 为标准正态分布分位数。

Jonckheere-Terpstra检验 检验原理以及方法 假设k个独立的样本: 分别来自于k个形状相同的分布: . 假设检验问题: 至少有一不等式严格成立。

计算步骤 1. 计算 2. 计算Jonckheere-Terpstra统计量: 3. 当J取大值的时候,考虑拒绝零假设,J精确分布可以查零分布表,对于大样本,可以考虑正态近似。 1. 计算 打结的情况时,采用变形的公式:

例5.3

例5.3解

Friedman秩方差分析 假设检验问题:   样本1 样本2 … 样本k 区组1 区组2 区组b 完全随机区组设计表

在同一区组内,计算样本的秩,并求出:   样本1 样本2 … 样本k 区组1 区组2 区组b 秩和

检验统计量 利用普通类似方差分析构造统计量: 在零假设成立下 ,如果 偏大,那么就考虑拒绝原价设。如果存在打结的情况,则可采用修正公式计算。

例5.5

Hollander-Wolfe两处理 比较检验 当用Friedman秩方差分析,检验出认为处理之间表现出差异的时候,那么可以进一步研究处理两两之间是否存在差异。 Hollander-Wolfe检验公式: 其中 ,在打结的情况下可使用修正的公式。当 时认为两个处理之间存在差异,其中 , 是显著性水平。

例5.6

随机区组调整秩和检验 假设检验问题:

计算步骤 1. 计算每一区组的位置估计,中位数或平均值等,如: 2. 计算 ,被称为调整观察值。 2. 计算 ,被称为调整观察值。 3. 将全部调整观测值混合求秩,设 对应的混合秩为 ,者称为调整秩。 其中

检验 在零假设成立时,Q 近似服从 ,当Q 偏大的时候,考虑拒绝原价设。出现打结时,需要用修正的公式。

例5.7

解答

解答(续)

Cochran检验 检验原理以及计算: 当完全区组设计,并且观测只是二元定性数据时,Cochran Q检验方法进行处理。数据形式见下表。其中

检验 假设检验问题: Cochran Q检验统计量: Q近似服从 分布,当Q值偏大的时候,考虑拒绝零假设。

Durbin不完全区组分析 原理: 可能存在处理非常多,但是每个区组中允许的样本量有限的时候,每一个区组中不可能包含所有的处理,比如重要的均衡不完全区组BIB设计。Durbin检验便是针对这种问题。 表示第j个处理第i个区组中的观测值, Rij 为在第i个区组中第j个处理的秩,计算:

构造统计量: 当D值较大的时候,可以考虑拒绝零假设,认为处理之间存在差异。在零假设成立时,大样本情况下,D近似服从分布 。打结的时候,只要长度不大,对结果影响不太大。

例5.9

解答

本章要求 掌握Kruskal-Wallis单因素方差分析的基本原理 掌握完全随机区组设计下Friedman的基本原理 掌握完全随机设计下两处理之间的比较 掌握完全随机区组设计下两两处理之间的比较 掌握BIB设计下Durbin比较 了解调整秩的概念及用法 熟练S-Plus中对如上方法的运用和相应的数据变换