数列求和
一、公式求和法 1.等差数列前n项和公式 Sn= = na1+ 2.等比数列前n项和公式 = Sn= na1(q=1) a1(1-q ) n(a1+an) 2 n(n-1)d 2 Sn= = na1+ 2.等比数列前n项和公式 a1(1-q ) 1-q n a1 - anq 1-q = (q=1) Sn= na1(q=1)
练习:求下列各数列的前n项和Sn: 1.{an}:1,3,5,…,2n-1,…Sn= n2 1- 2.{bn}: Sn=
Sn=(1+2)+(2+ )+(3+ )+…+(n+ ) 2 3 n 的前n和 。 解: 例.求数列 1 2 3 n + 1 + 2 , 2 + , 3 + , … , n Sn=(1+2)+(2+ )+(3+ )+…+(n+ ) 2 3 n 的前n和 。 解: =(1+2+3+ …+n) +(2+2 +2 +…+2 ) n 2 3 2(2 -1) 2-1 n n(n+1) 2 = + n(n+1) 2 2 -2 n+1 = +
cn=an+bn 二、分解重组求和法 ... n 2 2 3 2 1 2 3 n 2 + + , , n + 例.求数列 1 + , 2 , 项的特征 cn=an+bn ({an}、{bn}为等差或等比数列。)
Sn=2 + - 求Sn=1 +2 +3 + +n 。 练习:求数列 2+3, 2 +3 , 2 +3 , , 2 +3 , 的前n项和。 ... ... Sn=2 + - n+1 3 2 7 求Sn=1 +2 +3 + +n 。 1 2 3 n ...
aSn=a +2a +3a + +(n-1)a +na 例.求Sn= a+2a +3a + +(n-1)a +na (a≠1) ... 解:由Sn=a+2a +3a + +(n-1)a +na ... 2 3 n-1 n 得 aSn=a +2a +3a + +(n-1)a +na ... 2 3 4 n n+1 两式相减得 (1-a)Sn= a+a +a + +a +a -na ... 2 3 n-1 n n+1 a(1-a ) n 1-a - na n+1 = na n+1 1-a 2 (1-a ) a(1-a ) n Sn=
cn=anbn aSn=a +2a +3a + +(n-1)a +na 三、错位相减求和法 例.求Sn= a+2a +3a + +(n-1)a +na (a= 1) ... aSn=a +2a +3a + +(n-1)a +na ... 2 3 4 n n+1 项的特征 cn=anbn ({an}为等差数列,{bn}为等比数列)
练习 2 3 2 4 2 3 n n+1 求Sn=1 + + + + + ... n-1 n 2 2 n Sn= 3- n+3 2
四、拆项相消求和法 求Sn= + + + + + ( ) ( ) = - = + ( - ) = = + ( ) ( - ) = = 1 2×5 5×8 8×11 ... (3n-4)(3n-1) (3n-1)(3n+2) 1 2×5 1 3 ( ) 1 2 1 5 1 2×5 1 7 ( ) 1 2 1 5 = - = + 1 5×8 3 ( - ) 5 8 = = + 1 13 ( ) 5 8 5×8 1 8×11 3 ( - ) 8 11 = = 1 19 ( + ) 8 11 8×11 ... 1 (3n-4)(3n-1) = 3n-4 3n-1 3 ( - ) 1 (3n-1)(3n+2) = 3n+2 3n-1 3 ( - )
cn= = ( - ) 解: Sn= + + + + + ( ) - + + = + + + ( ) ( ) ( - ) ( - ) 1 (3n-1)(3n+2) = 3n+2 3n-1 3 ( - ) 解: Sn= + + + + + 1 2×5 5×8 8×11 ... (3n-4)(3n-1) (3n-1)(3n+2) 1 3 ( ) 8 11 - + + ... = + + + ( ) 2 5 ( ) 3n-4 3n-1 3n+2 ( - ) ( - ) 1 3n-4 3n-1 - ... 3n+2 8 11 5 2 3 = ( + + + + + ) 1 2 = ( - ) 3n+2 3 n 6n+4 =
cn= 项的特征 四、拆项相消求和法 求Sn= + + + + + ( - ) = ( ) = - ( - ) = = ( - ) = 1 2×5 5×8 8×11 ... (3n-4)(3n-1) (3n-1)(3n+2) 1 5×8 3 ( - ) 5 8 = 1 2×5 1 3 ( ) 1 2 1 5 = - 1 8×11 3 ( - ) 8 11 = ... 1 (3n-1)(3n+2) = 3n+2 3n-1 3 ( - ) 1 (3n-4)(3n-1) = 3n-4 3n-1 3 ( - ) 项的特征 cn= 1 anan+1 1 an an+1 - 1 d ( ) = (数列{an}是等差数列)
练习 1 1×2 1 2×3 1 3×4 1 n(n+1) 求Sn= + + + + ... n (n+1) 拆通项 Sn=
小结 一、公式求和法。 二、分解重组求和法。 三、错位相减求和法。 四、拆项相消求和法。