Download presentation
Presentation is loading. Please wait.
Published byJoonas Mikkola Modified 5年之前
1
第七章 蒙特卡罗方法在积分计算中的应用 蒙特卡罗方法求积分 重要抽样 俄国轮盘赌和分裂 半解析方法 系统抽样 分层抽样
2
第七章 蒙特卡罗方法在积分计算中的应用 计算多重积分是蒙特卡罗方法的重要应用领域之一。本章着重介绍计算定积分的蒙特卡罗方法的各种基本技巧,而这些技巧在粒子输运问题中也是适用的。
3
蒙特卡罗方法求积分 蒙特卡罗方法求积分的一般规则如下:任何一个积分,都可看作某个随机变量的期望值,因此,可以用这个随机变量的平均值来近似它。
4
设欲求积分 其中,P=P(x1,x2,…,xs) 表示 s 维空间的点,Vs表示积分区域。取Vs上任一联合概率密度函数 f (P),令 则
即θ是随机变量 g(P) 的数学期望,P的分布密度函数为 f (P) 。 现从 f (P) 中抽取随机向量 P 的 N 个样本:Pi,i=1,2,…,N, 则 就是θ的近似估计。
5
重要抽样 偏倚抽样和权重因子 取Vs上任一联合概率密度函数 f1(P),令 则有
现从 f1(P) 中抽样 N 个点:Pi,i=1,2,…,N, 则 就是θ的又一个无偏估计。
6
重要抽样和零方差技巧 要使 最小,就是使泛函I[f1] 极小。 利用变分原理,可以得到最优的 f1(P) 为
7
特别地,当 g(P)≥0 时,有 这时 即 g1的方差为零。实际上,这时有 不管那种情况,我们称从最优分布 fl(P)的抽样为重要抽样,称函数 | g(P) | 为重要函数。
8
俄国轮盘赌和分裂 分裂 设整数 n≥1,令 则 于是计算θ的问题,可化为计算 n 个θi 的和来得到,而每个 gi(P) 为原来θ的估计 g(P) 的 1/ n ,这就是分裂技巧。
9
俄国轮盘赌 令 0 < q<1, 则 于是θ变为一个两点分布的随机变量ζ的期望值, ζ的特性为: 这样就可以通过模拟这个概率模型来得到θ,这就是俄国轮盘赌。
10
重要区域和不重要区域 我们往往称对积分θ贡献大的积分区域为重要区域,或感兴趣的区域;称对积分θ贡献小的区域为不重要区域,或不感兴趣的区域。 考虑二重积分 令R是V2上 x 的积分区域,表为 R=R1+R2,其中R1是重要区域,R2是不重要区域,两者互不相交。又命Q为V2上相应于 y 的积分区域。则
11
通常蒙特卡罗方法,由f (x,y)抽样 (x,y)的步骤是:从 fl(x) 中抽取 xi,再由 f2(y|xi) 中抽样确定 yi,然后用
作为θ的一个无偏估计。 现在,改变抽样方案如下: 当x∈R1时,定义一个整数n(xi)≥1,对一个xi,抽取 n(xi)个yij,j=1,2,…,n(xi)。以平均值 代替上述θ估计式中的 g(yi, xi) 。
12
当 x∈R2时,定义一个函数q(xi),0< q(xi) <1,
以抽样值 代替上述θ估计式中的 g(yi, xi) 。这里ξ是随机数。 显然,这种抽样估计技巧,就是对 x∈R1时,利用分裂技巧,而对 x∈R2时,利用俄国轮盘赌,而使估计的期望值不变。由于对重要区域多抽样,对不重要区域少观察,因此能使估计的有效性增高。
13
半解析(数值)方法 考虑二重积分 令 则θx为θ的无偏估计。
14
θx 的方差为 而由 f (x,y)抽样 (x,y),用 g (x,y)作为θ的估计,其方差为
15
系统抽样 我们知道,由f (x,y)抽样 (x,y)的步骤是: 从 fl(x) 中抽取 xi, 再由 f2(y|xi) 中抽样确定 yi,
16
yi 的抽样方法不变。 其方差为 与通常蒙特卡罗方法相比,方差减少了约
17
分层抽样 考虑积分 在(0,1)间插入J-1个点 0=α0< α1< …< αJ-1< αJ=1 令
18
则有 现在,用蒙特卡罗方法计算θj ,对每个θj 利用 fj(x)中的nj 个样本xij ,那么有
Similar presentations