Download presentation
Presentation is loading. Please wait.
1
浙教版初中数学九年级(上) “4.6图形的位似” 教学设计
2
教材分析 教材的地位和作用 “4.6图形的位似”是浙教版九年级(上)第四章的内容,是相似形的延伸和深化。位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形。从教材编排的一些素材看,不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值。因此,本节教材对形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,具有积极促进的作用。
3
教材分析 教学内容的确定 新课标的理念,数学教育要面向全体学生,人人都能获得必需的数学。4.6图形的位似,作为新增的内容,以其丰富的社会背景为素材展示给我们,使我们感受到数学创造的乐趣,但它对后续学习的知识联系不是很大,所以我认为,本节课的教学内容应以教材的编排为准,概念、性质、应用等让学生容易接受就好,水到渠成,不必要拓展和深化,按教材编排,“4.6图形的位似”为1课时完成。用“观察——验证——推理和交流”的方法,培养学生主动探求知识的精神和思维的条理性。
4
教材分析 教学目标 1.理解图形的位似概念,掌握位似图形的性质。 2.会利用作位似图形的方法把一个图形进行放大或缩小。
1.理解图形的位似概念,掌握位似图形的性质。 2.会利用作位似图形的方法把一个图形进行放大或缩小。 3.掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。 4.经历位似图形性质的探索过程,进一步发展学生的探究、交流能力、以及动手、动脑、手脑和谐一致的习惯。 5.利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识,进一步培养学生动手操作的良好习惯。 6.发展学生的合情推理能力和初步的逻辑推理能力。
5
教材分析 教学重点和难点 本节教学的重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
本节教学的重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。 直角坐标系中图形的位似变化与对应点坐标的关系,因为它涉及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,所以是本节教学的难点。
6
教法 力求呈现“问题情境――建立数学概念――解释、应用 与拓展”的模式。结合本节课内容和学生的实际水平,可采用“观察——验证——推理和交流”的教学方法。 考虑到如何更直观、形象地突破教学重、难点,增大课堂容量,提高课堂效率,采用了多媒体辅助教学。
7
学法 叶圣陶说“教是为了不教”,也就是我们传授给学生的不只是知识内容,更重要的是指导学生一些数学的学习方法。在学习图形的位似概念过程中,让学生用类比的方法认识事物总是互相联系的,温故而知新。而通过“位似图形的性质”的探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳。 在分析理解位似图形性质时,加强师生的双边活动,提高学生分析问题、解决问题的能力。通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯。
8
教学过程 创设情景,构建新知 1.位似图形的概念 下列两幅图有什么共同特点?
下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.
9
教学过程 创设情景,构建新知 2、引导学生观察位似图形
下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征? 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比.
10
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(1)五边形ABCDE与五边形A′B′C′D′E′; (2)在平行四边形ABCD中,△ABO与△CDO
11
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(3)正方形ABCD与正方形A′B′C′D′. (4)等边三角形ABC与等边三角形A′B′C′
12
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(6)曲边三角形ABC与曲边三角形A′B′C′
13
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(7)扇形ABC与扇形A′B′C′, (B、A 、B′在一条直线上,C、A 、C′在一条直线上) (8)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)
14
2.如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比.
15
适当提高,应用新知 位似图形的性质 一般地,位似图形有以下性质: 位似图形上任意一对对应点到位似中心的距离之比等于位似比.
16
作位似图形 例: 如图,请以坐标原点O为位似中心,作的位似图形,并把的边长放大3倍.
17
直角坐标系中图形的位似变化与对应点坐标变化的规律
想一想: 1.四边形GCEF与四边形G′C′E′F′具有怎样的对称性? 2.怎样运用像与原像对应点的坐标关系,画出以原点为位似中心的位似图形? 以坐标原点为位似中心的位似变换有一下性质: 若原图形上点的坐标为(x,y),像与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(―kx,―ky).
18
练一练 1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长缩小到原来的一半.
19
练一练
20
小结内容,自我反馈 今天你学会了什么? 位似图形的定义,位似图形的性质.
Similar presentations