第四节 黄酮类化合物的检识与结构鉴定 目前主要采用的方法有: ①与标准品或与文献对照PPC或TLC得到的Rf或hRf值(Rf100)

Slides:



Advertisements
Similar presentations
宜昌金海科技股份有限公司 IB START 投行圈 2000 万股份定向募集项目. 主营业务介绍 从事各种酒类包装盒、食品饮料包装盒、包装箱等包装产 品及相关包装材料的设计、印刷、生产与销售,并为客户 提供包装产品设计、包装方案优化、第三方采购与包装产 品物流配送、供应商库存管理以及辅助包装作业等包装一.
Advertisements

氨基酸转换反应 ( 一 ) 血液中转氨酶活力的测定 一. 目的 : 了解转氨酶在代谢过程中的重要作用及其在临 床诊断中的意义, 学习转氨酶活力测定的原理和方 法。 二. 原理 : 生物体内广泛存在的氨基转换酶也称转氨酶, 能 催化 α – 氨基酸的 α – 氨基与 α – 酮基互换, 在氨基酸 的合成和分解尿素和嘌呤的合成等中间代谢过程中.
1 第三章烃的含氧衍生物 选修5 有机化学基础 2010、10、. 2 【知识与技能】: 1、认识苯酚的结构特点,能够正确书写苯酚的结构简式。 2.认识苯酚的弱酸性和与浓溴水的取代反应,能够正确书写相关的化学方程式。 3.体会苯酚中苯基和羟基之间存在相互影响。 4、了解苯酚的物理性质,苯酚的检验方法。
九年级物理一轮复习 第一章 声现象 知识要点. 1. 声音的产生和传播  ( 1 )声音的产生:声音是由于物体的振动产生的。  凡是发声的物体都在振动。振动停止,发声也停止。  ( 2 )声源:正在发声的物体叫声源。固体、液体、气体 都可以作为声源,有声音一定有声源。  ( 3 )声音的传播:声音的传播必须有介质,声音可以在.
認識食品標示 東吳大學衛生保健組製作.
词语(成语) 的理解与运用 真 题 例 析 方 法 总 结 1.
第八章 互换的运用.
颞下颌关节常见病.
实验 芦丁的鉴定 实验目的 实验内容 思考题.
致理科技大學保險金融管理系 實習月開幕暨頒獎典禮
第四章 醌类化合物 (Quinonoids)
药物分析 第八章 药品质量标准的制订.
实验二、补骨脂黄酮体的提取、分离及鉴定 廖矛川 王德彬 刘新桥 王 强 帅 丽 胡 昀 天然药物化学实验 中南民族大学药学院.
第五章 黄酮类化合物 Flavonoid.
人类活动与大气成分 制作人:刘一鼎 锑小组成员: 许世杰 张霖欣 蒋顾华 束润宇 刘一鼎.
教室空气质量与健康 ——谈谈教室开窗透气的重要性.
电路和电流 考点知识梳理 中考典例精析 课堂达标训练 专题训练.
結腸直腸腫瘤的認知.
經歷復活的愛 約翰福音廿一1-23.
遗传.
全球暖化、水污染、空氣污染.
往下扎根 向上生长 ——提高学考选考教学实效的几点感想 桐庐中学 李文娟
温州二中 高三生物 第一轮复习 孟德尔定律之分离定律 考纲要求:1、孟德尔遗传实验的科学方法 Ⅱ 2、基因的分离定律 Ⅱ.
第八、九章 皂苷和强心苷 皂苷:saponins(水溶液振摇时能产生肥皂样持久性泡沫,故名皂苷)存在于植物界的一类结构较复杂的苷类化合物,其苷元大多属于螺甾烷及其生源相似的甾族化合物或三萜类化合物。 强心苷:Cardiac glycosides 自然界中存在的一类对心脏具有显著生理活性的甾体苷类化合物,是临床上常用于治疗急、慢性充血性心力衰竭与节律障碍的重要药物。
第二章 发酵工业菌种.
郭詩韻老師 (浸信會呂明才小學音樂科科主任)
第四节 原料药及制剂检查.
2010年全国高考理科综合试题(II) 化学答卷分析
天然药物化学 NATURAL PRODUCTS CHEMISTRY
第二章 中药化学成分提取分离方法.
中枢兴奋药-酰胺类及其他类.
腸病毒防治 桃園縣政府衛生局.
國立勤益科技大學 冷凍空調與能源系 實務專題成果展
生物科簡報 主題: ※生長與發育※ 基因與遺傅※.
平湖市当湖高级中学 平湖市教育局教研室 (电话)
第十一章 抗生素类药物的分析.
化學食品.
認識現代的「食品科技」.
2. 戰後的經濟重建與復興 A. 經濟重建的步驟與措施 1.
好好學習 標點符號 (一) 保良局朱正賢小學上午校.
广西工学院 有机化学 主讲教师: 郑燕升.
腸病毒防治宣導 主講者 陳玟吟護理師.
(Mass Spectrometry, MS)
腸病毒介紹與防治 宜昌國小衛生組 關心孩子的健康.
4. 聯合國在解決國際衝突中扮演的角色 C. 聯合國解決國際衝突的個案研究.
2014年度 预归类专业技能培训和资格考试 纺织品部分(50-63章).
新陸書局股份有限公司 發行 第十九章 稅捐稽徵法 稅務法規-理論與應用 楊葉承、宋秀玲編著 稅捐稽徵程序.
有机化合物波谱分析.
[什麼是尿動力學檢查] [適應症] [檢查流程] [檢查前注意事項] [檢查中注意事項] [檢查後注意事項] [併發症/禁忌症] [結語]
民法第四章:權利主體 法人 楊智傑.
色谱联用技术 1. 概述 2. 气相色谱-质谱联用技术 3. 液相色谱-质谱联用技术 4. 毛细管电泳-质谱联用技术.
第三节 醌类化合物的提取分离 一、游离醌类的提取方法 1.有机溶剂提取法 2.碱提取酸沉淀法 有机溶剂 提取液 浓缩 浓缩液 氯仿等溶剂
主日信息: 講題:腳步 經文:箴言16:1~9 大綱: 壹、人的心 貳、人的謀算 參、交託耶和華 肆、耶和華的指引 金句:箴16:9
四年級 中 文 科.
第六章 有机化合物的波谱分析 前 言: 有机化合物的结构表征(即测定) —— 从分子水平认识物质的基本手段,是有机化学的重要组成部分。过去,主要依靠化学方法进行有机化合物的结构测定, 其缺点是:费时、费力、费钱,需要的样品量大。例如:鸦片中吗啡碱结构的测定,从1805年开始研究,直至1952年才完全阐明,历时147年。
第三章 核磁共振.
黄酮类化合物 (flavanoids).
第六章 多谱综合解析 6.1 各种图谱解析的主要着眼点 1. 质谱(MS) (1)从M.+--分子量
第十七章 欧姆定律 第1节 电流与电压和电阻的关系.
  你知道下列用电器工作时的电流有多大吗? 约5 A 约1 A 约1 A 约2 A 约0.5 A 约0.2 A.
聖誕禮物 歌羅西書 2:6-7.
第六章 化学动力学 6.15 链式反应 Cl· H· Cl2 H2 HCl.
第七节 结构测定 1、化学法 用Liebemman-Burchard反应和Molish反应鉴定三萜皂苷
依撒意亞先知書 第一依撒意亞 公元前 740 – 700 (1 – 39 章) 天主是宇宙主宰,揀選以民立約,可惜他們犯罪遭
2.4 让声音为人类服务.
一、学生实验:探究——电流与电压、电阻的关系
物理实验技术讲座 ----磁共振技术.
經文 : 創世紀一章1~2,26~28 創世紀二章7,三章6~9 主講 : 周淑慧牧師
成本會計 在決策中的功能 第四課 1.
第十四章 中药制剂分析.
Presentation transcript:

第四节 黄酮类化合物的检识与结构鉴定 目前主要采用的方法有: ①与标准品或与文献对照PPC或TLC得到的Rf或hRf值(Rf100) 第四节 黄酮类化合物的检识与结构鉴定 目前主要采用的方法有: ①与标准品或与文献对照PPC或TLC得到的Rf或hRf值(Rf100)  ②分析对比样品在甲醇溶液中及加入诊断试剂后得到的UV光谱 ③1H -NMR ④13C -NMR ⑤MS

一、色谱在黄酮类鉴定中的应用 1. 纸层析(PPC) 苷类成分可采用双向展开,第一相展开采用醇性溶剂,如BAW系统(正丁醇: 醋酸:水4:1:5上层);第二相展开用水性溶剂,如氯仿:醋酸:水(3:6:1) 苷元则多采用醇性溶剂。 花色苷及其苷元,可用含盐酸或醋酸的溶剂。 显色剂:2%三氯化铝甲醇液(紫外光下检测); 1%FeCl3 / 1%K3Fe(CN)6(1:1)混合液。

2. 薄层层析(TLC) 1)硅胶薄层 用于弱极性黄酮较好。 常用甲苯:甲酸甲酯:甲酸(5:4:1);苯:甲醇(95:5)或苯:甲醇:冰醋酸(35:5:5)等。

2)聚酰胺层析 适用范围广,可分离含游离酚羟基或其苷类。 常用展开系统:乙醇:水(3:2);丙酮:水(1:1)等。

二、紫外光谱在黄酮类鉴定中的应用 可用于确定黄酮母核类型及确定某些位置是否含有羟基。 一般程序: ①测定样品在甲醇中的UV谱以了解母核类型;

(一)黄酮类化合物在甲醇溶液中的紫外光谱 多数黄酮类化合物由两个主要吸收带组成: 带I在300-400nm区间,由B环桂皮酰系统的电子跃迁所引起。 B B

带II在240-285nm区间,由A环苯甲酰系统的电子跃迁所引起。

B环3’,4’有-OH基,带II为双峰(主峰伴肩峰)   带II(240-285nm)(苯甲酰系统) 带I(300-400nm) 桂皮酰系统 类 型 说 明 250-285 304-350 黄酮类 -OH越多,带I带II越红移 B环3’,4’有-OH基,带II为双峰(主峰伴肩峰) 328-357 黄酮醇类 (3-OR) 352-385 黄酮醇类(3-OH) 245-270 270-295 300-400 异黄酮类 二氢黄酮(醇) B环上有-OH, OCH3对带I影响不大 220-270 340-390 或340-390(Ia) 300-320(Ib) 查耳酮类 查耳酮2’-OH使带I红移的影响最大 370-430(3-4个小峰) 橙酮类

不同类型黄酮类化合物的紫外光谱

2.加入诊断试剂后引起的位移及结构测定

加入试剂 带II 带I 说明 样品+MeOH (黄酮类及黄酮醇类) 250-285 304-385 两峰强度基本相同,具体位置与母核上电负性取代基(-OH, -OCH3)有关,-OH, -OCH3越多,越长移   +NaOMe A环有-OH,红移小,无意义 40-60nm(不变或增强) 50-60nm(下降) 有4’-OH,无3-OH 有3-OH,无4’- OH 有3,4’-OH或3,3’,4’-OH(衰减更快)    7-OH 带I,II随加NaOMe时间延长,逐渐衰减 320-330nm有吸收,成苷后消失 +NaOAc (未熔融) 5-20 在长波一侧有明显的肩峰

+NaOAc (熔融)  40~65 有4’-OH +NaOAc/ H3BO3 5-10 12-30 有6,7-OH或7,8-OH (5,6-OH无) B环有邻二酚羟基   AlCl3/ HCl 60 50-60 35-55 17-20 0 有3-OH 有3,5-二OH 有5-OH,无3-OH 有6-OR 无3-OH, 5-OH AlCl3光谱-AlCl3/ HCl光谱 30-40 50-65 A,B环皆有邻二酚羟基 A,B环皆无邻二酚羟基

说明: (1)+NaOMe或NaOAc, OHONa,变为离子化合物,共轭系统中的电子云密度增加,红移 另有3,4’-OH或3,3’,4’-OH时,在NaOMe作用下易氧化破坏,故峰有衰减。 (2)NaOAc为弱碱,仅使酸性较强者,如7,4’-OH解离。

(3) 形成络合物的能力: 黄酮醇3-OH >黄酮5-OH(二氢黄酮5-OH)> 邻二酚羟基 > 二氢黄酮醇5-OH 邻二酚羟基和二氢黄酮醇5-OH在酸性条件下不与AlCl3络合; 但不在酸性条件下,五者皆与Al3+络合; 形成络合物越稳定,红移越多。

(4) 根据只加AlCl3和加入AlCl3及盐酸的紫外光谱吸收峰位相减的结果,可以判断邻二酚羟基的取代情况。

从中药柴胡中分离得到山柰苷,经酸水解后,用PC检出有鼠李糖,山柰苷及山柰酚的紫外光谱数据如下: 山柰苷 山柰酚 UVλmax(nm) 带II 带I 带II 带I MeOH 265 345 267 367 NaOMe 265 388 278 416(分解) AlCl3 275 399 268 424 AlCl3/HCl 275 399 269 424 NaOAc 265 399 276 387 NaOAc/H3BO3 265 345 267 367

山柰酚3,7-二鼠李糖苷

三、1H-NMR 常用溶剂:氘代氯仿(CDDl3),氘代二甲基亚砜(DMSO-d6),氘代吡啶(C5D5N)。 也可将黄酮类化合物制成三甲基硅醚衍生物溶于四氯化碳中进行测定。

黄酮类化合物1H-NMR谱(DMSO-d6)羟基的特征 δ5-OH:≈12 ppm δ7-OH:≈11 ppm δ3-OH:≈10 ppm

氘代二甲基亚砜(DMSO-d6)对鉴别黄酮母核上的酚羟基,是十分理想的溶剂,在试样中加入重水( D2O)羟基质子信号消失。

黄酮类1H-NMR (三甲基硅醚衍生物溶于四氯化碳中测定) (一)A环质子 1.5, 7-二-OH黄酮

当7-OH成苷时,则H-6及H-8信号均向低场方向位移。

2.7-OH黄酮 H-5较H-6、H-8低场,是由于羰基的负屏蔽效应的影响。 H-6、H-8较5, 7-二OH黄酮在较低场,且相互位置可能颠倒。

(二) B环质子 δ6.5-8 1.4’-氧取代黄酮类化合物 H-3’, 5’  6.5-7.1, d, J=8.5Hz 由于C环对H-2’, 6’的负屏蔽作用大于对H-3’, 5’, 且H-3’, 5’受4’-OR的屏蔽作用,故前者较低场; C环氧化程度越高,H-2’, 6’处于越低场的位置。

2.3’, 4’-二氧取代黄酮类化合物 (1)3’, 4’-二氧取代黄酮及 黄酮醇 H-5’  6.7-7.1 d, J=8.5Hz (1)3’, 4’-二氧取代黄酮及 黄酮醇 H-5’  6.7-7.1 d, J=8.5Hz H-2’  7.2 d, J=2.5Hz H-6’  7.9 dd, J=2.5, 8.5Hz H-2’受C环负屏蔽和3’-OR屏蔽作用,H-6’ 也受C环负屏蔽作用,而H-5’则仅4’-OR屏蔽作用。故由低场到高场的顺序为:H-6’ H-2’ H-5’。 但有时也会发生H-2’和H-6’重叠的现象。

(2)3’, 4’-二氧取代异黄酮、二氢黄酮及 二氢黄酮醇 H-2’, 5’,6’常作为一个复杂多重峰(通常为两组峰) 6.7-7.1

3.3’, 4’,5’-三氧取代黄酮类化合物 若R1=R2=R3=H,则H-2’,6’为单峰, 6.7-7.5 若上述条件不成立(如3’或5’甲基化或苷化时),则H-2’,6’分别为二重峰(J=2Hz)

(三)   C环质子 1. 黄酮类

2. 异黄酮类 H-2位于羰基位,同时受羰基和苯环的负屏蔽作用,且通过碳与氧相连,故较一般芳香质子低场,δ7.6-7.8。 若用DMSO-d6作溶剂,则δ8.5-8.7。

3. 二氢黄酮和二氢黄酮醇 1) 二氢黄酮 H-2, dd, δ5.2, Jtrans = 11Hz (反偶), Jcis = 5Hz(顺偶) 两个H-3, 分别为dd峰,中心位于δ2.8 ,J = 17Hz(偕偶),5Hz(顺偶)及J = 17Hz(偕偶),11Hz(反偶)

(2)二氢黄酮醇 H-2与H-3为反 式双直立键, J=11Hz H-2 δ 4.9 H-3 δ 4.3 3-OH苷化,供电子能力下降,两个氢的δ值升高(向低场位移),可用于判断二氢黄酮醇苷中糖的位置。

查耳酮: H- α : δ 6.50-6.70 ( 1H,d, J=Ca.17.0 ) H- β : δ 7.30-7.70 ( 1H,d, J=Ca.17.0 )

橙酮: 苄氢:δ6.50-6.70( 1H,s ) δ6.37-6.94( 1H,s, DMSO-d6 )

(四)  糖上的质子 1. 单糖苷类 糖与苷元相连时,糖上1˝-H与其它 H比较,一般位于较低磁场区。因-OR (R=苷元) 不表现供电子,仅表现吸电子的诱导作用,端基H受两个O的诱导,处于低场(4.0-6.0)

1)葡萄糖位于不同位置时端基H化学 位移的区别: C3-OR 1˝-H的 值约为5.8 C-5, C-6, C-7, C-4’-OR 1˝-H的 值约为4.8-5.2

2) 葡萄糖苷与鼠李糖苷的区别 黄酮醇3-O-葡萄糖苷5.8, d, J=7Hz (二直立键偶合系统) 黄酮醇3-O-鼠李糖苷5.0-5.1, d, J=2Hz (二平伏键偶合系统) 另外鼠李糖上的C-CH3 0.8-1.2, d, J=6.5Hz

糖上的氢 化合物 糖上的H-1’’ 黄酮醇3-O-葡萄糖苷 5.70-6.00 黄酮醇7-O-葡萄糖苷 4.80-5.20 黄酮醇6及8-C-糖苷 黄酮醇3-O-鼠李糖苷 5.00-5.10 二氢黄酮醇3-O-葡萄糖苷 4.10-4.30 二氢黄酮醇3-O-鼠李糖苷 4.00-4.20

2. 双糖苷类 末端糖上的H-1’’’因离黄酮母核较远,受到的负屏蔽作用较小,因而较H-1’’处于较高场的位置。

苯环上其他取代基的氢: 甲基 2.04-2.45 ( 3H,s ) 乙酰氧基 2.30-2.45 ( 3H, s ) 取代基 δ 甲基 2.04-2.45 ( 3H,s ) 乙酰氧基 2.30-2.45 ( 3H, s ) 甲氧基 3.45-4.10 ( 3H, s )

四、13C-NMR 方法: (1)对比法:与简单的模型化合物如苯乙酮、桂皮酸及它们的衍生物光谱的比较; (2)计算法:用经验的简单芳香化合物的取代位移加和规律进行计算; (3)选用各种一维和二维NMR技术。

(一)骨架类型的判断 根据中央三碳链的碳信号,即先根据羰基碳的δ值,再结合C2、C3在偏共振去偶谱中的裂分和δ值判断。

C=O C-2(或C-β) C-3(或C-α) 归属   174.5~184.0(s) 160.5~163.2(s) 104.7~111.8(d) 黄酮类 149.8~155.4(d) 122.3~125.9(s) 异黄酮类 147.9(s) 136.0(d) 黄酮醇类 182.5~182.7(s) 146.1~147.7(s) 111.6~111.9(d) (=CH-) 橙酮类 188.0~197.0(s) 136.9~145.4(d) 116.6~128.1(d) 查耳酮类 75.0~80.3(d) 42.8~44.6(t) 二氢黄酮类 82.7(d) 71.2(d) 二氢黄酮醇类

(二)黄酮类化合物取代图式的确定方法 黄酮类化合物中芳香碳原子的信号特征可以用来确定取代基的取代图式。 以黄酮为例,其13C-NMR信号如下所示:

1.取代基位移的影响 X Zi Zo Zm Zp OH 26.6 -12.8 1.6 -7.1 OCH3 31.4 -14.4 1.0 -7.8 -OH及-OCH3的引人将使直接相连碳原子(α-碳)信号大幅度地向低场位移,邻位碳原子(β-碳)及对位碳则向高场位移。间位碳虽也向低场位移,但幅度很小。

A-环上引入取代基时,位移效应只影响到A环,而B-环上引入取代基时,位移效应只影响到B环。若是一个环上同时引入几个取代基时,其位移效应将具有某种程度的加和性。

黄酮母核上引入5-OH时,不仅影响A环碳原子的化学位移,还因C5-OH与C4=O形成分子内氢键缔合,故可使C4,C2信号向低场移动(分别为+4.5及+0.9),而C-3信号向高场移动(–2.0)。C5-OH如果被甲基化或苷化(氢键缔合遭到破坏),则上述信号将分别向高场位移。

2.5,7-二羟基黄酮类中C-6及C-8信号的特征 对大多数5,7—二羟基黄酮类化合物来说,C-6(d)及C-8(d)信号在δ90.0~100.0的范围内出现,且C-6信号总是比C-8信号出现在较低的磁场。 在二氢黄酮中两者差别较小,约差0.9个化学位移单位,但在黄酮及黄酮醇中差别较大,约为4.8。 C-6或C8有无烷基或者芳香基取代可通过观察13C-NMR上C-6,C-8信号是否发生位移而加以认定。

生松素(pinocembrin)及其6-C-甲基及8-C-甲基衍生物的C-6,C-8 化合物 C-6 C-8 5,7-dihydroxyflavanone (pinocembrin) 96.1 95.1 6-C-methylpinocembrin 102.1 94.7 8-C-methylpinocembrin 95.7 101.9

木犀草素(1uteolin),即使因其C6上联接的H被-OH取代而向低场大幅度的位移,C-8信号也未因此而发生大的改变。 化合物 C-6 C-8 3',4',5,7-tetrahydroxyflavanone (luteolin) 99.2 94.2 8-C-benzylluteolin 98.6 103.8 6-C-hydroxyluteolin 140.4 93.6 木犀草素(1uteolin),即使因其C6上联接的H被-OH取代而向低场大幅度的位移,C-8信号也未因此而发生大的改变。

(三)黄酮类化合物O-糖苷中糖的连接位置 1.糖的苷化位移及端基碳的信号 酚性苷中,糖上端基碳的苷化位移约为+4.0~+6.0。 黄酮苷类化合物当苷化位置在苷元的7或2’、3’、4’时,糖的C-1信号将位于约δ100.0~102.5范围内。 5-O-葡萄糖苷及7-O-鼠李糖苷相应的C-1信号分别出现δ104.3及99.0处.。

黄酮类双糖苷或低聚糖苷的13C-NMR中,糖的端基碳信号出现在δ98. 0~109 黄酮类双糖苷或低聚糖苷的13C-NMR中,糖的端基碳信号出现在δ98.0~109.0区域内,常与C-6,C-8,C-3及C-10混在一起而不易区别。可采用HMQC (1H-detected heteronuclear multiple-quantum coherence)等二维核磁共振技术鉴别。

2.苷元的苷化位移 苷元苷化后与糖直接相连碳原子向高场位移,其邻位及对位碳原子则向低场位移,且对位碳原子的位移幅度大而且恒定。 C-5-OH糖苷化后,除上述苷化位移效应外,还因C5-OH与C4=O的氢键缔合受到破坏,故对C环碳原子也将发生巨大的影响。C2,C-4信号明显地向高场位移,而C-3信号则移向低场。

(四)双糖苷及低聚糖苷中分子内苷键 及糖的联接顺序 (四)双糖苷及低聚糖苷中分子内苷键 及糖的联接顺序 (1)当糖上的羟基被苷化时将使该-OH所在碳原子产生一个相当大的向低场位移。 例如在黄酮类化合物芦丁[苷元-O-β-D-glucosyl-(6→1)-α-L-rhamnoside)中,葡萄糖的C6信号将向低场位移5.8,但C-5则向高场位移约1.4。

(2)黄酮类双糖苷及低聚糖苷中糖的联结顺序常采用HMBC(1H-detected heteronucler multiple-bond-coherence)二维核磁共振技术进行确定。

五、质谱在黄酮类结构测定中的应用 多数黄酮类化合物苷元在电子轰击质谱(El-MS)中因分子离子峰较强,往往成为基峰,故一般无须作成衍生物即可进行测定。

但是当测定极性强、难气化以及对热不稳定的黄酮苷类化合物时,则采用FD-MS和FAB-MS、ESI-MS等软电离质谱技术获得强的分子离子峰[M]+及具有偶数电子的准分子离子峰(quasi-molecularion peak) [M+H] +。

(一)黄酮类化合物苷元的电子轰击质谱 (El-MS) 黄酮类化合物苷元的El-MS中,除分子离子峰[M]+外,也常常生成[M-1]+即(M-H)基峰。如为甲基化衍生物,则可以得到[M-15]+即(M-CH3)离子。

黄酮类化合物主要有下列两种基本裂解途径: 途径-I(RDA裂解): 120 102

途径-II 此外,还有分子离子M+.生成[M-1]+,(M-H)及[M-28]+.(M-CO);由A1生成[A1-28]+.,(A1-CO)及B2生成[B2-28]+,(B2-CO)等碎片离子。

1.黄酮类裂解基本规律:

一些黄酮类化合物的质谱数据 化合物 A1+. B1+. 黄酮 120 102 5,7-二氢黄酮 152 5,7,4'-三羟基黄酮(芹菜素) 118 5,7-二羟基,4'-甲氧基黄酮 (刺槐素) 132 A-环的取代图式可通过测定A1+.的m/z的值进行确定 。同样,根据B-环碎片离子的m/z值,也可精确测定B环的取代情况。

黄酮在有四个以上氧取代基时,常常给出中等强度的A1及B1碎片,它具有重要的鉴定意义;但是黄酮醇则不然,当氧取代超过四个以上时,只能产生微弱的Al+.及Bl+.碎片离子。

在3,6及8-位含有C-异戊烯基的黄酮类,除一般黄酮裂解途径外,还产生一些新的碎片离子。如:化合物(I)中A环上的,-二甲烯丙基在裂解过程中脱去C4H7·碎片,并重排成稳定的卓瓮离子(Ⅱ) 。

在6-及8-位含有甲氧基的黄酮可失去CH3·,得到[M—15]+强峰(常为基峰),随后又失去CO,生成[M-43]离子:

2.黄酮醇类质谱 多数黄酮醇苷元,分子离子峰是基峰,在裂解时主要按途径-Ⅱ进行,得到B2+离子,继续失去CO形成的[B2-28]+.离子。与途径Ⅱ相比,途径I通常不太主要。其中,[A+H]+是来自A-环的主要离子,其上转移的H来自3-OR基团。

在黄酮醇全甲基化衍生物的质谱图上,B2+离子应当出现在m/z105(B环无羟基取代),或135(-OCH3,示B环有一个羟基),或165(有两个-OCH3,示B环有两个羟基)或195(有三个-OCH3,示B环有三个羟基)等处,其中最强的峰即为B2+离子。

具有2'-OH或2'-OCH3的黄酮醇类在裂解时有个重要特点,即可以通过失去OH·或 OCH3·,形成一个新的稳定的五元杂环。

(二)黄酮苷类化合物的FD-MS 黄酮苷类化合物在EI-MS上既不显示分子离子峰,也不显示糖基的碎片,故不宜用 EI-MS测定。 而FD-MS谱可给出强烈的M+及[M+H]+。还给出葡萄糖基的某些碎片,为化合物的结构鉴定提供了重要的信息。

在FD-MS中,因为(M+23Na)离子的强度随着溶剂极性及发射丝电流强度的改变而变化,可用以帮助区别分子离子峰(M)+及伪分子离子峰[M+1]+。

小结:  第一节 概述包括(黄酮类化合物的结构分类、生物活性) 掌握黄酮类化合物的的定义、基本结构、分类和代表化合物。 第二节 理化性质和显色反应 掌握黄酮类化合物的颜色、旋光性、溶解度的特性及与结构之间的关系,掌握黄酮类化合物的酸碱性,酸性强弱与结构之间的关系及在提取分离中的应用,掌握显色反应与结构之间的关系及应用。

第三节 提取分离 掌握黄酮类化合物的一般提取方法、PH梯度分离法与结构之间的关系,掌握黄酮类化合物聚酰胺柱层析法、硅胶柱层析法和凝胶过滤法的原理以及它们与结构之间的关系

第四节 结构鉴定 掌握黄酮、黄酮醇、二氢黄酮、二氢黄酮醇、异黄酮、查耳酮和橙酮的母核紫外光谱特征,掌握加入各种诊断试剂的黄酮类化合物的解析规律、熟悉黄酮类化合物检识的色谱方法。掌握黄酮类化合物氢谱、碳谱的基本特征及其在结构鉴定中的应用,熟悉黄酮类化合物质谱的基本特点。