概率的定义是什么? 一般的,在大量重复试验中,如果事件A发生的频率m/n会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),记为P(A)=p 0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
例2.如图:是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率:(1)指向红色;(2) 指向红色或黄色;(3) 不指向红色。 练一练 解:一共有7中等可能的结果。 (1)指向红色有3种结果, P(红色)=_____ (2)指向红色或黄色一共有5种 等可能的结果,P( 红或黄)=_______ (3)不指向红色有4种等可能的结果 P( 不指红)= ________ 3/7 5/7 4/7
解:A区有8格3个雷, 遇雷的概率为3/8, 例3:如图:计算机扫雷游戏,在9×9个小方格中,随机埋藏着10个地雷,每个小方格只有1个地雷,,小王开始随机踩一个小方格,标号为3,在3的周围的正方形中有3个地雷,我们把他的去域记为A区,A区外记为B区,,下一步小王应该踩在A区还是B区? B区有9×9-9=72个小方格, 还有10-3=7个地雷, 由于3/8大于7/72, 所以第二步应踩B区 遇到地雷的概率为7/72,
比一比 1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ). A. B. C. D.1. 1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ). A. B. C. D.1. 2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法有( )种. A.4 B.7 C.12 D.81.
2.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率为多少?
3.如图所示,每个转盘被分成3个面积相等的扇形,小红和小芳利用它们做游戏:同时自由转动两个转盘,如果两个转盘的指针所停区域的颜色相同,则小红获胜;如果两个转盘的指针所停区域的颜色不相同,则小芳获胜,此游戏对小红和小芳两人公平吗?谁获胜的概率大? 红 黄 蓝
1.小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定。请问在一个回合中三个人都出“布”的概率是 ; 2.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不能得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是 ;
用列举法求概率 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同 (2)两个骰子的点数之和是9 例题5 复 习 思考一 例题6 思考二 课堂小结 中考点击 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同 (2)两个骰子的点数之和是9 (3)至少有一个骰子的点数为2
用列举法求概率 例题5 复 习 思考一 例题6 思考二 课堂小结 中考点击 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同 (2)两个骰子的点数之和是9 (3)至少有一个骰子的点数为2 解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。 (1)满足两个骰子的点数相同(记为事件A)的结果有6个,则 P(A)= = (2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则 P(B)= = (3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则 P(C)= 第 一 个 二 1 2 3 4 5 6 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
用列举法求概率 当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法。 1 2 3 4 5 6 思考一 复 习 例题5 例题6 思考二 课堂小结 中考点击 1、什么时候用“列表法”方便? 当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法。 2、如果把上一个例题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所有可能出现的结果有变化吗? 第 一 次 二 1 2 3 4 5 6 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 改动后所有可能出现的结果没有变化
用列举法求概率 复 习 例题5 思考一 例题6 思考二 课堂小结 中考点击 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少? 解:由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等. 满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则 P(A)= = 第 一 张 二 1 2 3 4 5 6 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
用列举法求概率 例题6 复 习 例题5 思考一 思考二 课堂小结 中考点击 甲口袋中装有2个相同的小球,它们分别写有字母A和B; 乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。 从3个口袋中各随机地取出1个小球。 (1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少? 本题中元音字母: A E I 辅音字母: B C D H
用列举法求概率 例题6 复 习 例题5 思考一 思考二 解:由树形图得,所有可能出现的结果有12个,它们出现的可能性相等。 课堂小结 中考点击 甲口袋中装有2个相同的小球,它们分别写有字母A和B; 乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。 从3个口袋中各随机地取出1个小球。 (1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少? 解:由树形图得,所有可能出现的结果有12个,它们出现的可能性相等。 (1)满足只有一个元音字母的结果有5个,则 P(一个元音)= 满足只有两个元音字母的结果有4个,则 P(两个元音)= = 满足三个全部为元音字母的结果有1个,则 P(三个元音)= (2)满足全是辅音字母的结果有2个,则 P(三个辅音)= = 甲 A B 乙 C D E C D E 丙 H I H I H I H I H I H I B C H A I D E
用列举法求概率 1 2 3 4 5 6 想一想,什么时候用“列表法”方便,什么时候用“树形图”方便? 思考二 复 习 例题5 思考一 例题6 课堂小结 中考点击 想一想,什么时候用“列表法”方便,什么时候用“树形图”方便? 第 一 个 二 1 2 3 4 5 6 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) A C D E H I B 当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图 当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法
用列举法求概率 思考二 复 习 例题5 思考一 例题6 课堂小结 中考点击 巩固练习:在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便? 1、从盒子中取出一个小球,小球是红球 2、从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同 3、从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同 直接列举 列表法或树形图 树形图
1.小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?
练习 解:设两双袜子分别为A1、A2、B1、B2,则 B1 A1 B2 A2 开始 所以穿相同一双袜子的概率为