第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —

Slides:



Advertisements
Similar presentations
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
Advertisements

平面向量.
第五章 多元函数微分学.
第七章 空间解析几何与向量代数简介 空间直角坐标系 向量 空间直线及其方程 空间平面及其方程 常见曲面及其方程.
精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
第6章 多元函数微积分 6.1空间解析几何简介. 6.2多元函数微分学. 6.3多元函数积分学..
第6章 向量代数与空间解析几何 一、内容提要 (一)主要定义
第11章 向量代数与空间解析几何MATLAB求解
高等数学II 课程网页: 答疑时间:(周一10:00-12:00三教三楼答疑室)
第七章 空间解析几何与向量代数 用代数的方法研究几何问题称为解析几何 平面解析几何 一元微积分 空间解析几何 多元微积分 本章的主要内容 :
第七章 空间解析几何与向量代数 1、空间直角坐标系; 2、向量及其线性运算; 3、向量的坐标、数量积、向量积;
第七章 向量代数与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的坐标表示 第三节 向量的数量积和向量积 第四节 平面方程
第七章 多元微分学 空间曲面与曲线 多元函数的基本概念 偏微商与全微分 多元复合函数及隐函数求导法则 多元函数的极值和最优化问题.
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
第一部分:空间曲面 第二部分:空间曲线.
第六章 空间解析几何.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第七章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第七章 向量代数与空间解析几何 如同平面解析几何那样,空间解析几何是通过建立空间直角坐标,把空间的点与三元有序数组对应起来,用三元方程及方程组来表示空间几何图形,从而可以用代数的方法来研究空间几何问题,而这又是学习微积分的基础。 §1 向量及其线性运算 一.向量的概念 1.数量与向量:仅有数值大小的物理量称数量或标量,如温度、时间等。不仅有大小,还有方向的量称向量或矢量,如力、速度等。
空间解析几何与向量代数 第一节 向量及其线性运算 第二节 数量积 向量积 *混合积 第三节 曲面及其方程 第四节 空间曲线及其方程
第二章 轨迹与方程 §2.1 平面曲线的方程 §2.2 曲面的方程 §2.3 母线平行于坐标轴的方程 §2.4 空间曲线的方程.
第七章 向量与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的点积与叉积 第三节 平面与直线 结束.
第六节 曲面与空间曲线 一、曲面及其方程 二、 柱 面 三、 旋转曲面 四、 二次曲面 五、 空间曲线的方程.
第六节 曲面及其方程 一 曲面方程的概念 二 旋转曲面 三 柱面 四 二次曲面.
第六章 向量代数与空间解析几何 第一节 空间直角坐标 第二节 矢量代数 第三节 空间中的平面和直线 第四节 二次曲面
第一节 空间解析几何的基本知识 1、空间直角坐标系 2、几种特殊的曲面 3、空间曲线.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
第三章 空间解析几何 与向量代数.
复习 设 1. 向量运算 加减: 数乘: 点积: L.P204~P206 叉积:.
解析几何课件(第四版) 吕林根 许子道等编 第一章 矢量与坐标 第二章 轨迹与方程 第三章 平面与空间直线
第九章 空间解析几何 一、主要内容 二、典型例题.
第四章 向量代数与空间解析几何 前言 同平面解析几何一样,空间解析几何就是通过建立空间直角坐标系,使空间的点与三元有序实数组之间建立起一一对应的关系,并将空间图形与三元方程联系在一起,从而达到用代数方法研究空间几何的目的.因此,空间解析几何的内容也是很重要的,它是学习多元函数微积分的基础.
3.4 空间直线的方程.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第六章 向量代数与空间解析几何 第一节 向量及其线性运算 一、空间直角坐标系 二、向量与向量的线性运算 三、向量的坐标表示式
第9章 向量与空间解析几何 9.1 空间直角坐标系与向量的概念 9.2 向量的数量积与向量积 9.3 平面方程与空间直线方程
空间直角坐标系 这一章,我们为学习多元函数微积分学作准备,介绍空间解析几何和向量代数。这是两部分相互关联的内容。用代数的方法研究空间图形就是空间解析几何,它是平面解析几何的推广。向量代数则是研究空间解析几何的有力工具。这部分内容在自然科学和工程技术领域中有着十分广泛的应用,同时也是一种很重要的数学工具。
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第七章 空间解析几何 §5 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两空间直线的夹角
第七章 空间解析几何 §3 向量的乘法 一、两向量的数量积 二、两向量的向量积 三、向量的混合积.
第二讲 曲线与二次曲面 教学目的:曲线和二次曲面 难点: 组合图形的作图 重点:平面、直线和二次曲面的 图形与方程的对应关系.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
主要内容 1、柱面 2、锥面 3、旋转曲面 4、椭球面 5、双曲面 6、抛物面
空间解析几何简介 向量及其线性运算 数量积 向量积 *混合积 空间平面及其方程 空间直线及其方程 二次曲线及其方程 二次曲面及其方程.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
一、平面的点位式方程 1 平面的方位向量 过空间中一点M与两个不共线的向量 ,可以唯一确定一个平面 ,则 向量 称为平面 的方位向量
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
§1.1空间直角坐标系 一.空间直角坐标系 坐标原点; 坐标轴; 坐标平面。
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
微积分 (I)期末小结 2019/4/25.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.5空间向量运算的 坐标表示.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
《工程制图基础》 第四讲 几何元素间的相对位置.
直线和圆的位置关系 ·.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
第一模块 向量代数与空间解析几何 第二节 向量及其坐标表示法 一、向量的概念 二、向量的坐标表示法.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
3.2 立体几何中的向量方法 3.2 . 1 直线的方向向量与平面的法向量 1.了解如何用向量把空间的点、直线、平面表示来出.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第一模块 向量代数与空间解析几何 第六节 二次曲面与空间曲线 一、曲面方程的概念 二、常见的二次曲面及其方程 三、空间曲线的方程
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 — 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法

第一节 向量及其线性运算 一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、利用坐标作向量的线性运算 五、向量的模、方向角、投影 第八章 第一节 向量及其线性运算 一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、利用坐标作向量的线性运算 五、向量的模、方向角、投影

一、向量的概念 或 a , 或 a . 向量: 既有大小, 又有方向的量称为向量 (又称矢量). 表示法: 有向线段 M1 M2 , 向量的模 : 向量的大小, 自由向量: 与起点无关的向量. 单位向量: 模为 1 的向量, 记作 e 或e . 零向量: 模为 0 的向量,

若向量 a 与 b大小相等, 方向相同, 则称 a 与 b 相等, 记作 a=b ; 若向量 a 与 b 方向相同或相反, 则称 a 与 b 平行, 记作 a∥b ; 规定: 零向量与任何向量平行 ; 与 a 的模相同, 但方向相反的向量称为 a 的负向量, 记作-a ; 因平行向量可平移到同一直线上, 故两向量平行又称 两向量共线 . 若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k 个向量共面 .

二、向量的线性运算 1. 向量的加法 平行四边形法则: 三角形法则: 运算规律 : 交换律 结合律 2. 向量的减法 三角不等式

3. 向量与数的乘法  是一个数 ,  与 a 的乘积是一个新向量, 记作 运算律 : 结合律 分配律 因此 定理1. 设 a 为非零向量 , 则 ( 为唯一实数) a∥b

三、空间直角坐标系 1. 空间直角坐标系的基本概念 过空间一定点 O , 由三条互相垂直的数轴按右手规则 组成一个空间直角坐标系. 坐标原点 z 轴(竖轴) Ⅱ 坐标原点 Ⅲ 坐标轴 Ⅳ Ⅰ 坐标面 zOx面 卦限(八个) y轴(纵轴) Ⅶ Ⅵ Ⅴ Ⅷ x轴(横轴)

2. 向量的坐标表示 在空间直角坐标系下, 任意向量 r 可用向径 OM 表示. 设点 M 的坐标为 则 此式称为向量 r 的坐标分解式 , 记 此式称为向量 r 的坐标分解式 , 沿三个坐标轴方向的分向量,

四、利用坐标作向量的线性运算 设 则 平行向量对应坐标成比例:

五、向量的模、方向角、投影 1. 向量的模与两点间的距离公式 两点间的距离公式:

2. 方向角与方向余弦 设有两非零向量 任取空间一点 O , 称  =∠AOB (0≤ ≤  ) 为向量 的夹角. 类似可定义向量与轴, 轴与轴的夹角 . 与三坐标轴的夹角 ,  ,  为其方向角. 方向角的余弦称为其方向余弦.

方向余弦的性质:

3. 向量在轴上的投影 设 a 与 u 轴正向的夹角为 , 则 a 在轴 u 上的投影为 , 即 例如, 在坐标轴上的投影分别为 投影的性质 1) 2) (为实数) 第二节

第八章 第二节 数量积 向量积 一、两向量的数量积 二、两向量的向量积

一、两向量的数量积 1. 定义 设向量 的夹角为 , 称 记作 数量积 (点积) . 记作 故 2. 性质 为两个非零向量, 则有 

3. 运算律 (1) 交换律 (2) 结合律 (3) 分配律 4. 数量积的坐标表示 设 则 两向量的夹角公式

二、两向量的向量积 1. 定义 定义 方向 :   且符合右手规则 向量 模 : 称 向量积 , 记作 (叉积) 三角形面积 S=

2. 性质 为非零向量, 则 ∥ 3. 运算律 (2) 分配律 (3) 结合律

4. 向量积的坐标表示式 设 则

第三节 第八章 曲面及其方程 一、曲面方程的概念 二、旋转曲面 三、柱面 P403 四、二次曲面

定义1. 如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系: (1) 曲面 S 上的任意点的坐标都满足此方程 (2) 不在曲面 S 上的点的坐标不满足此方程 则 F( x, y, z ) = 0 叫做曲面 S 的方程, 曲面 S 叫做方程 F( x, y, z ) = 0 的图形. 两个基本问题 : (1) 已知一曲面作为点的几何轨迹时, 求曲面方程. (2) 已知方程时 , 研究它所表示的几何形状 ( 必要时需作图 ).

二、旋转曲面 定义2. 一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转 轴 . 例如 :

建立yOz面上曲线C 绕 z 轴旋转所成曲面的方程: 曲线 C 绕 y 轴旋转

三、柱面 一般地,在三维空间 柱面, 母线 平行于 z 轴; 准线 xOy 面上的曲线 l1. 柱面, 母线 平行于 x 轴; 准线 yOz 面上的曲线 l2. 柱面, 母线 平行于 y 轴; 准线 xOz 面上的曲线 l3.

四、二次曲面 三元二次方程 (二次项系数不全为 0 ) 的图形统称为二次曲面. 其基本类型有: 椭球面、抛物面、双曲面、锥面 1. 椭球面

2. 抛物面 (1) 椭圆抛物面 ( p , q 同号) 特别,当 p = q 时为绕 z 轴的旋转抛物面. (2) 双曲抛物面(鞍形曲面) ( p , q 同号)

3. 双曲面 (1)单叶双曲面 (2) 双叶双曲面 注意单叶双曲面与双叶双曲面的区别: 单叶双曲面 双叶双曲面

4. 椭圆锥面

第八章 第四节 空间曲线及其方程 一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影 P411

一、空间曲线的一般方程 空间曲线可视为两曲面的交线, 其一般方程为方程组 例如,方程组 C P411 表示圆柱面与平面的交线 C.

二、空间曲线的参数方程 将曲线C上的动点坐标 x, y, z表示成参数 t 的函数: 称它为空间曲线的 参数方程. 例如,圆柱螺旋线 称它为空间曲线的 参数方程. 例如,圆柱螺旋线 的参数方程为 P411 上升高度 , 称为螺距 .

三、空间曲线在坐标面上的投影 设空间曲线C的一般方程为 消去 z 得投影柱面 则C在xOy 面上的投影曲线 C´为 消去 x 得C 在yOz 面上的投影曲线方程 P414 消去y 得C在zOx 面上的投影曲线方程

例如, 在xOy 面上的投影曲线方程为

第五节 第八章 平面及其方程 一、平面的点法式方程 二、平面的一般方程 三、两平面的夹角

一、平面的点法式方程 设一平面通过已知点 且垂直于非零向 量 求该平面的方程. 平面的点法式方程, 法向量. 特别,当平面与三坐标轴的交点分别为 平面方程为 此式称为平面的截距式方程.

二、平面的一般方程 特殊情形 • 当 D = 0 时, A x + B y + C z = 0 表示 通过原点的平面; • 当 A = 0 时, B y + C z + D = 0 的法向量 平面平行于 x 轴; • A x+C z+D = 0 表示 平行于 y 轴的平面; • A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示 平行于 xOy 面 的平面; • A x + D =0 表示 平行于 yOz 面 的平面; • B y + D = 0 表示 平行于 zOx 面 的平面.

三、两平面的夹角 两平面法向量的夹角(常指锐角)称为两平面的夹角. 设平面∏1的法向量为 平面∏2的法向量为 则两平面夹角 的余弦为 即

特别有下列结论:

是平面 设 外一点,求 到平面的距离d . 解:设平面法向量为 在平面上取一点 ,则P0 到平面的距离为 (点到平面的距离公式)

第六节 第八章 空间直线及其方程 一、空间直线方程 二、线面间的位置关系

一、空间直线方程 1. 一般式方程 直线可视为两平面交线, 因此其一般式方程

2. 对称式方程 已知直线上一点 和它的方向向量 设直线上的动点为 则 故有 此式称为直线的对称式方程(也称为点向式方程) 设 得参数式方程 :

二、线面间的位置关系 1. 两直线的夹角 两直线的夹角指其方向向量间的夹角(通常取锐角) 设直线 L1, L2 的方向向量分别为 则两直线夹角  满足

︿ 2. 直线与平面的夹角 当直线与平面不垂直时, 直线和它在平面上的投影直 线所夹锐角 称为直线与平面间的夹角; 当直线与平面垂直时,规定其夹角为  设直线 L 的方向向量为 平面  的法向量为 则直线与平面夹角  满足 ︿

备用题 1. 设 求向量 在 x 轴上的投影及在 y 轴上的分 向量. 解: 因 故在 x 轴上的投影为 在 y 轴上的分向量为

求以向量 为边的平 2. 设 行四边形的对角线的长度 . 解: 对角线的长为 该平行四边形的对角线的长度各为

备用题 1. 已知向量 的夹角 且 解:

2. 在顶点为 三角形中, 求 AC 边上的高 BD . 解: 三角形 ABC 的面积为 而 故有

备用题 求曲线 绕 z 轴旋转的曲面 与平面 的交线在 xOy 平面的投影曲线方程. 解: 旋转曲面方程为 ,它与所给平面的 交线为

备用题 求过点 且垂直于二平面 和 的平面方程. 解: 已知二平面的法向量为 取所求平面的法向量 则所求平面方程为 化简得

备用题 一直线过点 且垂直于直线 又和直线 相交,求此直线方程 . 解: 方法1 利用叉积. 的方向向量为 过 A 点及 面的法向量为 方法1 利用叉积. 的方向向量为 过 A 点及 面的法向量为 则所求直线的方向向量 所以

待求直线的方向向量 故所求直线方程为 方法2 利用所求直线与L2 的交点 . 设所求直线与 L2 的交点为 则有 即

而 代入上式 , 得 由点向式得所求直线方程