*第 7 章 量子力学中的矩阵形式 与表象变换.

Slides:



Advertisements
Similar presentations
夯实教师教育 办好非师范教育 ---- 以外语专业为例 河北师范大学 李正栓. 1. 坚定不移地实施教师教育 A. 关键词:师范院校 师范院校是以培育师资为目的的教育机构,多属于高等教育 层级。 含 “ 师范大学 ” 或 “ 师范学院 ” 。另外,由师专升为本科的院校 多数更名为 “XX 学院 ”
Advertisements

写作中的几点小技巧 金乡县羊山中学 张秀玲. 一、写外貌不用 “ 有 ” 作文如何来写外貌?同学们的作文里总会出现类 似这样的句子: “ XX 可漂亮了,她有一头卷卷的黄头 发,有一双乌黑的葡萄般的大眼睛,有高高的鼻子, 还有一张樱桃小嘴。 ” 如果试着去掉文中的 “ 有 ” ,把文字重新修改一遍,
十大写作技巧. 一、写外貌不用 “ 有 ” 作文如何写外貌?孩子的作文里总会看到类似这样的名 子: “XX 可漂亮了,她有一头卷卷的黄头发,有一双乌黑的 葡萄般的大眼睛,有一个高高的鼻子,还有一张樱桃小嘴。 ” 如果你试着让他们去掉文中的 “ 有 ” ,把文字重新串联一遍, 会发现作文顺了很多。 写上段文字的同学经蒋老师指导后修改如下:
招商谈判技巧 芝麻官营销. 技巧原则 孙子兵法云: “ 兵无常势,水无常形,能 因敌之变化而取胜者,谓之神。 ” “ 内功心法 ” 只有在真正实践中才能体会、 掌握。 谈判有没有具体的套路?有没有 “ 一招制 敌 ” 的擒拿手?
“ 十二五 ” 广东省科技计划项目 经费监管培训 广东省科技厅 一、专项经费管理法规 一、专项经费管理法规 二、经费监督检查 二、经费监督检查 三、项目预算调整管理 三、项目预算调整管理 四、课题经费预算执行管理 四、课题经费预算执行管理 五、项目(课题)财务验收 五、项目(课题)财务验收 2.
1 語音下單代表號 請輸入分公司代碼 2 位結束請按#字鍵 統一證券您好 ﹗ 請輸入分公司代碼結束請按#字鍵,如不知分公司代碼請按*號。 請輸入您的帳號後 7 位 結束請按#字鍵 請在聽到干擾音時輸入您的密碼結束請按#字鍵 主選單一覽表 委託下單請按 1 ; 取消下單請按 2 成交回報請按.
人權教育融入教學與 法治教育 彭巧綾 蔡永棠 閱讀理解 六頂思考帽 以概念圖整理閱讀理解 指導學生運用關鍵詞,繪製概 念圖,並分享修正。
指導老師:邱敏慧老師 姓名:徐鈺琁 班級:114 座號:33
义务教育课程标准实验教材 四年级下册 语文园地六 词语盘点 习作 口语交际 我的发现 日积月累 展示台.
专题培训 企业所得税汇算清缴 (2015年度).
被 江 泽 民 残 酷 迫 害 致 死 的 法 轮 功 学 员 李竟春,女,1954年3月16日出生,江西省九江市人。于2000年12月18日到北京证实大法,关押在北京市门头沟看守所遭受非人的迫害。在狱中李竟春绝食抗争被管教骗喝一瓶“可疑的豆浆”后一直咳嗽不断,发烧呕吐,吐出白色有强烈异味液体,于2000年1月4日死亡。
目录 如何职位分析调查表 职位分析的目的与意义 职位调查表内容与要点说明 职位分析注意事项 职位分析调查工作计划.
第四章:长期股权投资 长期股权投资效果 1、控制:50%以上 有权决定对方财务和经营.
1 修辞手法 2 表现手法 3 表达方式 4 结构技巧 表达技巧.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
个人简历 制作 天津民族中专 刘冬.
第八编 清代文学 清代文学绪论 第一章 清代诗词文 第二章 《长生殿》与《桃花扇》 第三章 《聊斋志异》 第四章 《儒林外史》
2015年衢州开化 事业单位备考讲座 浙江研究院 刘洁.
視力不良學(幼)童 篩檢與矯治常見問題 長庚醫院 兒童眼科 楊孟玲 醫師.
轻松应对百变题型——说明文阅读 五年级 语文 赵老师.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
3.4 空间直线的方程.
问卷调查法.
小一中文科 家長工作坊
第三章 企业主要经济业务核算 学习目的和要求:通过对工业企业的主要经济业务的了解,要求学生掌握、巩固帐户与借贷记帐法的相关知识及其运用,并进一步了解和熟悉会计核算方法。 本章重点与难点问题是:企业在各阶段的业务核算 内容提要:本章首先介绍企业在各不同阶段(企业创立阶段、企业供应阶段、企业生产阶段、企业销售阶段等)的业务内容;然后介绍了各阶段业务核算所需设置的帐户及其帐户的功能与结构;最后举例说明各阶段业务的核算。
明城 微课程研究运用 姓 名:严静华 单 位:佛山市高明区东洲中学 作品名称:《排比的理解与运用》
校本培训 常州市新北区新桥实验小学 金文英 团体活动助人成长 校本培训 常州市新北区新桥实验小学 金文英
2014年造价员资格考试 建设工程造价管理基础知识 徐建元.
教師權益─ 退撫制度變革修法 吳忠泰 退撫制度變革修法電子檔可在全教總網站下載分享
【 准 备 上 课 啦 】 心 境 —— 快 乐 源 泉 学习 — 悦于心 聚于魂 化于行.
第七章 无形资产.
《幼儿园模拟教学》(第一章 第二章) 呼伦贝尔学院 教育科学学院 学前教育教研室.
广州事业单位面试专项练习 主讲:蔡厚佳 微博:腰果公考菜菜爱做梦 2016年04月29日-05月05日.
第五章 二次型 §5.1 二次型的矩阵表示 §5.2 标准形 §5.3 唯一性 §5.4 正定二次型 章小结与习题.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
《老年人权益保障》 --以婚姻法.继承法为视角
高等学校会计制度的学习体会 (第二次征求意见稿).
房地产开发项目经营情况 (X204-1表).
幼儿园现代管理的思考与实践.
童軍志工服務報告 陽光基金會 愛心捐活動 第2組 報告人:秦惠芬 製作人:江妮錡.
面试与面试技术.
秀明小學 原來可以這樣學習 應用題 黃耀勤老師 石慧慧老師 李玉珍老師.
函 文种常识 结构写法 注意事项 例文赏析与训练.
学习情境四 旅行社接待业务的管理 【学习目标】 了解旅行社接待业务的性质与特点; 熟悉旅行社门市接待业务与管理;
小一中文科 家長工作坊
发生火灾怎么办 后窑镇中心小学 吴琼.
2013年全省法制培训提纲 (工商执法中若干问题的解决思路) 2013年3月12日.
太阳能概述   太阳能是由太阳内部热核反应所释放出的光能、热能及辐射能量。它每年辐射到地球上的能量达1813亿吨标准煤,相当于全世界年需要能量总和的5000倍,是地球上最大的能源。 广东工业大学 材料能源学院.
强化。心系.
年金改革的是與非 吳忠泰.
勞保局人員.
走向对话的地理课堂教学 海盐高级中学 徐海群.
主讲人 杨延风律师 合同的实务操作与法律风险防范.
檔案銷毀作業 臺南市政府.
仿写训练 华罗庚实验学校西宁分校 钟卫平.
三、进项转出.
求职信.
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
电子教案 量子力学教程(第二版) 湖州师范学院 编 主 编 于少英 沈彩万 参 编 刘艳鑫 董永胜 董国香 邱为钢 李艳霞
XX信托 ·天鑫 9号集合资金信托计划 扬州广陵
量子化学 第三章 矩阵与算符 3.1 线性代数(Linear Algebra) 3.2 矩阵 (Matrices)
第六章 自旋和角动量 复旦大学 苏汝铿.
第三章 矩阵力学基础 ——力学量和算符 复旦大学 苏汝铿.
工业机器人技术基础及应用 主讲人:顾老师
第四章 态和力学量表象 §1 态的表象 §2 算符的矩阵表示 §3 量子力学公式的矩阵表述 §4 Dirac 符号
Partial Differential Equations §2 Separation of variables
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
Presentation transcript:

*第 7 章 量子力学中的矩阵形式 与表象变换

7.1 量子态的不同表象,么正变换 一、直角坐标系中的类比 取平面直角坐标系x1x2的基矢为e1和e2,长度为1,彼此正交 标积 7.1 量子态的不同表象,么正变换 一、直角坐标系中的类比 取平面直角坐标系x1x2的基矢为e1和e2,长度为1,彼此正交 标积 我们将其称之为基矢的正交归一关系. 平面上的任一矢量 可以用它们来展开 称为矢量A在坐标系x1x2中的表示. A1、A2代表A在坐标系中的投影.

二、坐标系顺时针转动 现在将坐标系x1x2顺时针方向转动,得到 x1′x2′,其基矢为e1′和e2′,满足 在此坐标系中,矢量A表示成 其中投影分量是

同一个矢量A在两个坐标系中的表示有什么关系? 根据(2)和(2')式 上式分别用e1′和 e2′点乘,得 表成矩阵的形式为

或记为 把A在两坐标中的表示联系起来的变换矩阵 矩阵R的矩阵元是两个坐标系的基矢之间的标积,它表示基矢之间的关系.故当R 给定,则任何一个矢量在两坐标系间的关系也随之确定.

三、变换矩阵的性质 变换矩阵R 具有下述性质: 是R的转置矩阵 真正交矩阵 (实矩阵)

量子态和力学量(算符)的不同表示形式,称为表象。 四、不同表象中基矢的关系 量子态和力学量(算符)的不同表示形式,称为表象。 形式上与此类似,在量子力学中,按态叠加原理,任何一个量子态,可以看成抽象的Hilbert空间中的一个“矢量”.体系的任何一组对易力学量完全集F的共同本征态,可以用来构成此空间的一组正交归一完备的基矢(称为F表象) 对于任意态矢量y ,可以用它们展开 其中

这一组数 就是态(矢)在F表象中的表示, 它们分别是态矢y与各基矢的标积. 与平常解析几何不同的是: ①这里的“矢量”(量子态)一般是复量; ②空间维数可以是无穷的,甚至不可数的. 现在考虑同一个态y在另一组力学量完全集 F′中的表示. F′表象的基矢,即F′的本征态 y'a ,它们满足正交归一性

对于任意态矢量y ,可以用它们展开 这一组系数 就是态(矢)y在F'表象中的表示, 与 有何关系 ? 显然 (14)左乘 (取标积),得

其中 F′表象基矢与F表象基矢的标积 (15)式也可以写成矩阵的形式: 简记为

式(17)就是同一个量子态在F′表象中的表示与它在 F表象中表示的关系,它们通过S 矩阵相联系,且 变换矩阵S 为么正(unitary)矩阵矩阵,此变换也称为么正变换.