第9章 平稳时间序列分析.

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
《金融时间序列分析》实验 讲授教师:郭文旌 南京财经大学金融学院.
第六章 动态模型.
«地学建模» 之 “随机时间序列分析模型”.
非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学 统计与管理学院.
3.2.平稳性检验的单位根方法 单位根检验方法 DF检验 ADF检验 PP检验 KPSS检验 ERS检验 NP检验.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
第三章 函数逼近 — 最佳平方逼近.
《高等数学》(理学) 常数项级数的概念 袁安锋
常用逻辑用语复习课 李娟.
第十章 时间序列的特性.
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
不确定度的传递与合成 间接测量结果不确定度的评估
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
ARIMA模型在电量预测中的应用 蔡跳
Signals and Systems Lecture 28
第2章 Z变换 Z变换的定义与收敛域 Z反变换 系统的稳定性和H(z) 系统函数.
第三章 平稳时间序列分析.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
第六章 多元时间序列分析.
7 平稳时间序列预测法 7.1 概述 7.2 时间序列的自相关分析 7.3 单位根检验和协整检验 7.4 ARMA模型的建模 回总目录.
第七章:回归分析的其它问题 第一节 虚拟变量 第二节 设定误差 第三节 滞后变量模型介绍 第四节 随机解释变量 第五节 时间序列模型初步.
非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学统计学系.
第4章 多元线性回归分析.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第五章 非平稳序列的随机分析.
第十章 方差分析.
第七章 参数估计 7.3 参数的区间估计.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
Partial Differential Equations §2 Separation of variables
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
iSIGHT 基本培训 使用 Excel的栅栏问题
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第4课时 绝对值.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
概率论与数理统计B.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
§2 方阵的特征值与特征向量.
难点:连续变量函数分布与二维连续变量分布
回归分析实验课程 (实验三) 多项式回归和定性变量的处理.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三章 平稳时间序列分析.
数学模型实验课(二) 最小二乘法与直线拟合.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

第9章 平稳时间序列分析

平稳时间序列分析 9.1 时间序列的概念 9.2 时间序列模型 9.3 自回归模型的平稳性和相关函数 9.2.1 白噪声序列 9.2.2 自回归模型 9.2.3 移动平均模型 9.2.4 自回归模型转化为移动平均模型 9.3 自回归模型的平稳性和相关函数 9.3.1 自回归模型的平稳性 9.3.2 自回归模型的自相关函数

平稳时间序列分析 9.4 自回归模型定阶和估计 9.5 自回归分布滞后模型 9.6 ARCH模型 重要概念 9.4.1 自回归模型定阶 9.4.2 自回归模型估计 9.4.3 自回归模型再定阶—信息准则 9.5 自回归分布滞后模型 9.5.1 自回归分布滞后模型 9.5.2 格兰杰因果关系检验 9.6 ARCH模型 9.6.1 ARCH模型的定义 9.6.2 ARCH模型估计 重要概念

9.1 时间序列的概念 设时点 处的观测为随机变量 ,这些随机变量形成一个时间序列,记为 或者 , 的一组具体取值称为时间序列的实现值(realization)。 自相关函数(ACF:AutoCorrelation function )

9.1 时间序列的概念 定义1(平稳性):如果时间序列 的数学期望、方差和协方差不随时间变化,即 定义1(平稳性):如果时间序列 的数学期望、方差和协方差不随时间变化,即 称 为宽平稳(wide-sense stationary)时间序列。宽平稳也称为协方差平稳或者二阶矩平稳。

9.1 时间序列的概念 严平稳:时间序列中任意一组随机变量的联合分布不随时间发生变化,即对任意一组时间点 和时间间隔 , 严平稳:时间序列中任意一组随机变量的联合分布不随时间发生变化,即对任意一组时间点 和时间间隔 , 的联合分布与 的联合分布相同,称 严平稳。 二阶矩存在的严平稳时间序列一定宽平稳,宽平稳的时间序列不一定严平稳,本书只讨论宽平稳,将宽平稳时间序列简称为平稳时间序列。

9.1 时间序列的概念 若 为平稳时间序列,则: (1) (2) 满足大数定律,因此 分别是 、 和 的一致估计。

9.1 时间序列的概念 表示 的 阶滞后,用滞后算符 表示为 例如 用滞后算符多项式表示为:

9.2 时间序列模型 9.2.1 白噪声序列 9.2.2 自回归模型 9.2.3 移动平均模型 9.2.4 自回归模型转化为移动平均模型

9.2 时间序列模型 9.2.1 白噪声序列 定义2(白噪声):如果时间序列 满足: (1) , (2)对任意 , 和 不相关,即 定义2(白噪声):如果时间序列 满足: (1) , (2)对任意 , 和 不相关,即 称 为白噪声序列,简称白噪声 (white noise)。 是平稳时间序列的极端例子。

9.2 时间序列模型 9.2.2 自回归模型 一阶自回归模型AR(1) , 为白噪声 , 为白噪声 除了常数项以外, 在 时刻的值由前定项 (predetermined term) 和与前期值不相关的新息(innovation) 组成。 阶自回归模型AR(k)

9.2 时间序列模型 9.2.2 自回归模型 模型 , 150个样本的时序图:

9.2 时间序列模型 9.2.3 移动平均模型 对一阶自回归模型进行递推: 当 时, ,

9.2 时间序列模型 9.2.3 移动平均模型 取有限项, 上式即为 阶移动平均模型。

9.2 时间序列模型 9.2.4 自回归模型转化为移动平均模型 由于 在上述一阶自回归模型两边同乘

9.2 时间序列模型 9.2.4 自回归模型转化为移动平均模型 可以转化为移动平均模型的自回归模型称为可逆的(invertible)。 从上面推导可以看出,一阶自回归模型可逆的条件是 。实际上,自回归模型的可逆条件,是滞后多项式的根在单位圆外。滞后多项式即:

9.3 自回归模型的平稳性和相关函数 9.3.1 自回归模型的平稳性 9.3.2 自回归模型的自相关函数

9.3 自回归模型的平稳性和相关函数 9.3.1 自回归模型的平稳性 阶自回归模型: 且 为白噪声序列 用滞后算子表达上式为:

9.3 自回归模型的平稳性和相关函数 9.3.1 自回归模型的平稳性 结论1:自回归模型平稳的充分必要条件为:滞后多项式的根都在单位圆之外,即方程 的根 满足 。其中 为实根时 表示绝对值, 为虚根时 表示虚数的模。

9.3 自回归模型的平稳性和相关函数 9.3.1 自回归模型的平稳性 滞后多项式的单位根均在单位圆内,则时间序列平稳;若有根为1,则不平稳,此时称存在单位根。 把模型是否平稳的检验称为单位根检验。

9.3 自回归模型的平稳性和相关函数 9.3.1 自回归模型的平稳性 例子9.1 为平稳时间序列 为非平稳时间序列

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 对 阶自回归模型: 且 为白噪声序列 两边取期望,得 9.3.2 自回归模型的自相关函数 对 阶自回归模型: 且 为白噪声序列 若 为平稳时间序列,则 两边取期望,得 代入原模型,整理可得零均值化的 阶自回归模型:

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 重新将 记为 ,即用 表示原 模型中的 。此时, 。后面的自回 9.3.2 自回归模型的自相关函数 重新将 记为 ,即用 表示原 模型中的 。此时, 。后面的自回 归模型都将采用这种零均值化后的模型 。

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 AR(1)模型的自相关函数 用 表示变量的方差 得出 9.3.2 自回归模型的自相关函数 AR(1)模型的自相关函数 用 表示变量的方差 得出 表示 与 的协方差

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 AR(1)模型的自相关函数 同理, 则AR(1)的自相关函数为 。

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 结论2:AR(1)模型的自相关函数(ACF)为 9.3.2 自回归模型的自相关函数 结论2:AR(1)模型的自相关函数(ACF)为 平稳性要求 ,当 时, ,即自相关系数随时间间隔增加指数递减到0,但不等于0。这种现象称为自回归模型自相关函数的拖尾性。

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 例子9.2

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 AR(2)模型的自相关函数 当 时

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 AR(2)模型的自相关函数 由上式可解得

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 AR(2)模型的自相关函数 9.3.2 自回归模型的自相关函数 AR(2)模型的自相关函数 结论2:AR(2)模型的自相关函数(ACF)为 下面一行等式称为尤勒-沃尔克方程(Yule-Walker equations)。

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 AR(2)模型的自相关函数 例子 9.3

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 AR(2)模型的偏自相关函数 9.3.2 自回归模型的自相关函数 AR(2)模型的偏自相关函数 称 为 阶自回归模型的偏自相关系数(PAC:Partial Auto-Correlation)

9.3 自回归模型的平稳性和相关函数 9.3.2 自回归模型的自相关函数 AR(2)模型的偏自相关函数 AR(k)模型的偏相关函数为 9.3.2 自回归模型的自相关函数 AR(2)模型的偏自相关函数 AR(k)模型的偏相关函数为 阶数大于 时,偏自相关系数为0,这种现象称为AR模型偏相关函数的截尾性。 偏自相关系数 是剔除 对 的影响后, 和 的相关系数。

9.4自回归模型的定阶和估计 9.4.1 自回归模型定阶 9.4.2 自回归模型估计 9.4.3 自回归模型再定阶—信息准则

9.4自回归模型的定阶和估计 9.4.1 自回归模型定阶 自回归模型的确立:确定阶数 估计 再次确定阶数的循环 自回归模型的确立:确定阶数 估计 再次确定阶数的循环 自相关函数用来确定采用自回归模型是否合适。如果自相关函数具有拖尾性,则AR模型为合适模型。 偏自相关函数用来确定模型的阶数。如果从某个阶数之后,偏自相关函数的值都很接近0,则取相应的阶数作为模型阶数。

9.4自回归模型的定阶和估计 9.4.1 自回归模型定阶 例子9.3 库存投资模型—定阶 例子9.3 库存投资模型—定阶 打开包含库存投资变量Invent的工作文件,在主菜单中点击Quick →Series Statistics → Correlogram

9.4自回归模型的定阶和估计 9.4.1 自回归模型定阶 例子9.3 库存投资模型—定阶 例子9.3 库存投资模型—定阶 在出现的对话框中输入序列(变量)名称,点击OK按钮,弹出的对话框(Correlogram Specification)中有对原数据(level),一阶差分后的数据(1st difference),二阶差分后的数据(2nd difference)的选择,以及自回归包含多少滞后项(Lags to include)。

9.4自回归模型的定阶和估计 9.4.1 自回归模型定阶 例子9.3 库存投资模型—定阶

9.4自回归模型的定阶和估计 9.4.1 自回归模型定阶 例子9.3 库存投资模型—定阶 点击OK后,将显示结果

9.4自回归模型的定阶和估计 9.4.1 自回归模型定阶 例子9.3 库存投资模型—定阶 例子9.3 库存投资模型—定阶 看自相关(Autocorrelation),发现有拖尾性,故可以选择自回归模型,看偏自相关(Partial Correlation),发现有截尾现象:高于四阶的偏自相关均为0,故可以建立4阶自回归模型AR(4)。

9.4自回归模型的定阶和估计 9.4.2 自回归模型估计

自回归模型估计 最小二乘估计 AR(k)模型仍为线性模型,且误差项 满足基本第4章的假设1~假设4,故得出的估计仍然就有一致性和马尔科夫性。 当样本量较大时,采用滞后变量导致的回归样本减少对估计精度的影响不大。

自回归模型估计 极大似然估计 假设误差项服从正态分布,可以用极大似然估计。 故

自回归模型估计 极大似然估计 对数似然函数为 其最大化得出的估计与最小二乘估计一致。

自回归模型估计 EViews操作 第一种方法:点击主菜单的Quick→ Estimate Equation,若按一般线性回归模型进行设定,则输入

自回归模型估计 EViews操作 输出结果

自回归模型估计 EViews操作 若按自回归模型进行设定,则输入 注意:估计AR(4)时要将AR(1)到AR(4)全部写出。

自回归模型估计 EViews操作 输出结果

自回归模型估计 EViews操作 上述两种估计方法仅截距项的估计不一样,原因是前者采用普通最小二乘法,后者采用约束最小二乘法。在用EViews估计时间序列模型时,应采用第二种设定方法。

自回归模型估计 EViews操作 第二种方法:采用向量自回归VAR估计方法。点击主菜单的Quick→Estimate VAR,点选VAR Type中的Unrestricted VAR,在Endogenous Variables栏中输入变量名invent,在Lag Intervals for Endogenous栏中输入1 2 3 4,在Exogenous Variables栏输入c:

自回归模型估计 EViews操作

自回归模型估计 EViews操作 输出结果与普通最小二乘法一致

自回归模型估计 脉冲响应函数 脉冲响应是指 处新息 的变化对后续 的影响。 平稳AR模型可以转换为无穷阶的移动平均模型,设转换后的MA模型为 脉冲响应是指 处新息 的变化对后续 的影响。 平稳AR模型可以转换为无穷阶的移动平均模型,设转换后的MA模型为 的脉冲响应函数(IRF:impulse response function)定义为:

自回归模型估计 脉冲响应函数 例子9.3(续) 库存投资模型—脉冲响应 分析 例子9.3(续) 库存投资模型—脉冲响应 分析 首先用VAR估计法估计AR模型,在输出结果界面,点击View→Impulse Response,弹出对话框

自回归模型估计 脉冲响应函数 例子9.3(续) 库存投资模型—脉冲响应 分析 点选Display Format 例子9.3(续) 库存投资模型—脉冲响应 分析 点选Display Format 下的Combined Graph,在 Impulse和Response中均填 入invent,在Periods(最 大滞后期)中输入数字, 点击确定输出结果如右:

9.4自回归模型的定阶和估计 9.4.3 自回归模型的再定阶—信息准则 9.4.3 自回归模型的再定阶—信息准则 前面自回归模型的定阶是通过计算样本的自相关函数和偏自相关函数得出的,存在一定的偏差。 信息准则也可以被用来确定阶数,常用的有赤池信息准则(Aikaike info Criterion)AIC和施瓦兹信息准则(Schwarz info Criterion)SC,最优阶数使得信息准则值最小。

9.4自回归模型的定阶和估计 9.4.3 自回归模型的再定阶—信息准则 例子9.4 信息准则定阶 9.4.3 自回归模型的再定阶—信息准则 例子9.4 信息准则定阶 分别计算AR(1)到AR(5)的信息准则值,然后 再比较,选出使得信息准则值最小的阶数 AIC:-6.003716、-6.061554、-6.069740、-6.047398、-6.032800 SC :-5.864837、-5.893780、-5.872679、-5.820648、-5.775950 故AIC建议选择3阶滞后,SC建议选择2阶滞后。

9.5 自回归分布滞后模型 9.5.1 自回归分布滞后模型 9.5.2 格兰杰因果关系检验

9.5 自回归分布滞后模型 9.5.1 自回归分布滞后模型 ARDL(AutoRegression Distribution Lag) 适应性预期模型(消费与收入的关系)

9.5 自回归分布滞后模型 9.5.1 自回归分布滞后模型 ARDL(AutoRegression Distribution Lag) 部分调整模型(宏观经济变量)

9.5 自回归分布滞后模型 9.5.1 自回归分布滞后模型 例子9.5 货币需求 弗里德曼货币需求函数: 取对数, 货币需求部分调整 例子9.5 货币需求 弗里德曼货币需求函数: 取对数, 货币需求部分调整 货币需求的时间序列模型

9.5 自回归分布滞后模型 9.5.2. 格兰杰因果关系检验 检验变量之间领先关系的方法:如果序列 的信息 对 有显著解释能力,表明变量 是 的原因,这种关系称为格兰杰因果关系。 检验 (没有格兰杰因果关系)

9.5 自回归分布滞后模型 9.5.2. 格兰杰因果关系检验 例子9.6 石油与经济 表示价格变化, 为国民生产总值变化的百分比。

9.5 自回归分布滞后模型 9.5.2. 格兰杰因果关系检验 例子9.6 石油与经济 例子9.6 石油与经济 在Eviews中将两个变量打开(Open→as Group),在数据表格界面点击View→Granger Causality,在弹出对话框Lag Specification中输入需要加入的滞后阶数。

9.5 自回归分布滞后模型 9.5.2. 格兰杰因果关系检验 例子9.6 石油与经济 输出结果 格兰杰因果只是统计意义上的因果关系

9.6 ARCH模型 9.6.1 ARCH模型的定义 9.6.2 ARCH模型估计

9.6 ARCH模型 9.6.1 ARCH模型的定义 股票价格 随机游走,从而股票收益为白噪声, 之间没有关系,但 之间则可能存在关系,能为资产定价提供信息。

9.6 ARCH模型 9.6.1 ARCH模型的定义 定义1(ARCH模型):设时间序列 满足 阶自回归模型,误差项序列 为白噪声。如果误差项平方形成的序列 服从 阶自回归模型,称时间序列 为带 误差项的自回归模型,表示为 其中 和 为相互独立的白噪声序列。上式中第一个方程为均值方程,第二个方程称为方差方程或者波动方程。

9.6 ARCH模型 9.6.1 ARCH模型的定义 上述定义中中均值和方差模型也可写作: 若序列 的前后相关性持续时间太长(方差聚集效应),则需要选取较大的 ,而GARCH 模型 也能描述持续的相关性,因此通常使用GARCH(1,1)来描述条件方差的行为。

9.6 ARCH模型 9.6.1 ARCH模型的定义 ARCH-m模型(风险溢价) 方差还可以以 或 的形式引入

9.6 ARCH模型 9.6.2 ARCH模型估计 不可观测,故只能用极大似然估计

9.6 ARCH模型 9.6.2 ARCH模型估计 给出初值 和 ,即可以估计参数。初值 和 可以采用如下两种方法得到:(1)用OLS方法估计均值模型,回归残差作为对初值的估计 (2)回代法 , 为平滑参数,通常取 。 误差项的分布还可以选择t-分布或者GED分布。

9.6 ARCH模型 9.6.2 ARCH模型估计 例子9.6 沪深300指数(日收益率建模) 例子9.6 沪深300指数(日收益率建模) 打开包含日收益率的EViews文件,Quick Estimation equation,在Estimation settings的 Methods中选择ARCH-Autoregressive Conditional Heteroskedasticity,弹出对话框

9.6 ARCH模型 9.6.2 ARCH模型估计 例子9.6 沪深300指数(日收益率建模) 对估计方法的细节设定 例子9.6 沪深300指数(日收益率建模) 对估计方法的细节设定 是否在均值模型中加入波动率为解释变量 均值模型设定,此处为白噪声 选择GARCH的类型 误差项的分布假设 GARCH的具体回归阶数

9.6 ARCH模型 9.6.2 ARCH模型估计 设定回代法 的值 对含移动平均项的均值模型进行设定

9.6 ARCH模型 9.6.2 ARCH模型估计 例子9.7 β系数

重要概念 1. 时间序列分析的重点,是建立合适的模型刻画不同时间点上随机变量的相关性。常用的时间序列模型有自回归模型和移动平均模型,平稳的自回归模型可以转化为无穷阶的移动平均模型。时间序列的相关性,用自相关系数和偏自相关系数表示。 2. 平稳性是时间序列的数学期望、方差和协方差不随时间变化。自回归模型描述的时间序列的平稳性,可以用模型的滞后多项式根来判断。如果滞后多项式的根都落在单位圆外,则时间序列平稳。 3. 阶数的自回归模型的自相关函数和偏自相关函数具有不同的性质,据此可以判断对给定的样本数据,多少阶的自回归模型是合适的。 4. 自回归模型的估计可以采用OLS估计和极大似然估计,两种方法得出的自回归系数估计相同。自回归模型的估计和定阶是交替进行的。除了采用自相关函数和偏自相关函数初步确定阶数之外,还可以采用信息准则确定模型阶数。

重要概念 5. 为了研究两个时间序列之间的关系,在自回归模型自变量中引入另一个时间序列变量及其滞后项,形成自回归分布滞后模型。适应性预期模型和部分调整模型,是自回归分布滞后模型在经济理论中的应用。对自回归分布滞后模型进行参数约束检验,可以对经济时间序列之间的领先关系进行格兰杰因果关系检验。 6. 用自回归模型对时间序列的条件方差进行建模,与均值模型一起形成带ARCH误差项的模型。GARCH模型不仅能充分刻画条件方差相关性,还具有更为简洁的形式。GARCH(1,1)模型应用最为广泛,其一般形式为 GARCH模型采用极大似然估计方法进行估计,为保证方差的非负性和方差模型的平稳性,需要对模型系数施加复杂的约束。