代数模型:Dürer魔方(或幻方)问题 

Slides:



Advertisements
Similar presentations
因数与倍数 2 、 5 的倍数的特征
Advertisements

3 的倍数特征 抢三十
质数和合数 2 的因数( ) 6 的因数( ) 10 的因数 ( ) 12 的因数 ( ) 14 的因数 ( ) 11 的因数 ( ) 4 的因数( ) 9 的因数( ) 8 的因数( ) 7 的因数( ) 1 、 2 、 3 、 4 、 6 、 12 1 、 11 1 、 2 、 5 、 10.

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
办公室保健指南. 减少辐射篇 ❤显示器散发出的辐射多数不是来自它的正面,而是侧面和后面。因此,不要 把自己显示器的后面对着同事的后脑或者身体的侧面。 ❤常喝绿茶。茶叶中含有的茶多酚等活性物质,有助吸收放射性物质。 ❤尽量使用液晶显示器。
第四单元 100 以内数的认识
因数与倍数 2 、 5 、 3 的倍数的特 征 新人教版五年级数学下册 执教者:佛山市高明区明城镇明城小学 谭道芬.
做个百数表. 把表格填完整,仔细观察,你还有什么新发现 ?
第四单元 100 以内数的认识
北师大版四年级数学下册 天平游戏(二).
大地遊戲王 課程實錄.
藉由經營權異動入主上櫃公司規章修正宣導 證券櫃檯買賣中心 上櫃監理部
第四章 向量组的线性相关性 §1 向量组及其线性组合 §2 向量组的线性相关性 §3 向量组的秩 §4 线性方程组的解的结构.
3.4 空间直线的方程.
加強水銀體溫計稽查管制及回收 回收作業須知及緊急應變措施
第四章 账户及复式记账的应用 教学目的与要求:本章内容属于会计实务部分。通过本章的教学,使学生掌握制造企业经济业务的核算内容及账务处理,进一步加深对复式记账原理的理解,熟练掌握借贷记账法在制造企业的实际应用。 教学重点:运用借贷记账法对制造企业的经济业务进行账务处理。 教学难点:利润的核算;期末各账户之间的相互结转。
第4章 分錄及日記簿 4-1 借貸法則 4-2 日記簿的格式及記錄方法 4-3 分錄的意義及記錄方法 4-4 常見分錄題型分析
两位数乘两位数 (进位)乘法 四 乘法(第二课时).
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
山东科技职业学院 教育教学情况汇报 教学中心:董传民.
第十三屆 Step.1 我們的目標 Step.2 我們的角色 Step.4 權利與義務 義務 權利 年繳會費五百元整
逻辑模型 浙江大学数学建模基地.
财务管理.
10.2 立方根.
交通事故處置 當事人責任與損害賠償 屏東縣政府警察局交通隊.
植物保护 课程整体设计 汇报 申报省级精品资源共享课建设 植物保护课程组.
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
政府扶持资金通览 技术改造篇.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
探索三角形相似的条件(2).
国产动画 ——童年的回忆.
同学们好! 肖溪镇竹山小学校 张齐敏.
本科生医保资料的提交.
統計圖表的製作.
元素替换法 ——行列式按行(列)展开(推论)
双曲线的简单几何性质 杏坛中学 高二数学备课组.
规范教学,提升质量,迎接评估 ——学校教学管理制度解读
计算.
数列.
《结构力学认知实验》(授课形式)的上课时间改为: 5月5日(周二)晚上18:00~19:30和19:30~21:00,
《结构力学认知实验》(授课形式)的上课时间改为: 5月7日(周四)晚上18:30~20:00和20:00~21:30,
Partial Differential Equations §2 Separation of variables
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时7分 / 45.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
复习.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
畢業資格審查系統 操作步驟說明.
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
新制退休實務計算說明- 現職人員退休範例說明
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
线性代数 第十一讲 分块矩阵.
祈禱之手 文字&製作:賴建鵬.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
§2 方阵的特征值与特征向量.
2、5、3的倍数的特征.
第五节 线性方程组有解判别定理 一、线性方程组的向量表示形式 二、线性方程组有解判别定理 三、一般线性方程组的解法 四、线性方程组的求解步骤.
找 因 数.
這七個故事很簡短,但她們說的都是一個主題——愛情!真心希望你們每個故事都看一下,不會用很長時間,但保證你能感到那種被震撼的感覺!
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

代数模型:Dürer魔方(或幻方)问题  德国著名的艺术家Albrecht Dürer(1471-1521)于1514年曾铸造了一枚名为“Melencotia I”的铜币。令人奇怪的是在这枚铜币的画面上充满了数学符号、数字及几何图形。这里,我们仅研究铜币右上角的数字问题

什么是Dürer魔方 所谓的魔方是指由1~n2这n2个正整数按一定规则排列成的一个n行n列的正方形 。n称为此魔方的阶 。 多么奇妙的魔方! 铜币铸造时间:1514年

构造魔方是一个古老的数学游戏,起初它还和神灵联系在一起,带有深厚的迷信色彩。传说三千二百多年前(公元前2200年),因治水出名皇帝大禹就构造了三阶魔方(被人们称“洛书”),至今还有人把它当作符咒用于某些迷信活动,大约在十五世纪时,魔方传到了西方,著名的科尼利厄斯·阿格里帕(1486-1535)先后构造出了3~9阶的魔方 。

如何构造魔方 奇数(不妨n=5)阶的情况 Step1: 在第一行中间写1 Step2: 每次向右上方移一格依次填按由小到大排列的下一个数,向上移出界时填下一列最后一行的小方格;向右移出界时填第一列上一行的小方格。若下面想填的格已填过数或已达到魔方的右上角时,改填刚才填的格子正下方的小方格,继续Step2直到填完 偶数阶的情况 偶数阶的魔方可以利用奇数阶魔方拼接而成,拉尔夫·斯特雷奇给出了一种拼接的方法 ,这里不作详细介绍 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9

魔方数量随阶数n增长的速度实在是太惊人了! 同阶魔方的个数 五阶 没人知道有多少个!!! 三阶 1个 反射和中心旋转生成8个 四阶 880个 反射和中心旋转生成7040个 魔方数量随阶数n增长的速度实在是太惊人了!

松驰问题的讨论 允许构成魔方的数取任意实数 问题已发生了实质性变化 n阶魔方A、B,任意实数α、β αA+βB是n阶魔方 允许取实数 具有指定性质的魔方全体构成一个线性空间 注:刻画一个线性空间只需指出它的维数并求出此线性空间的一组基底

仍以4阶方阵为例。 令R为行和,C为列和,D为对角线和,S为小方块和 定义0-方:R=C=D=S=0 定义1-方:R=C=D=S=1 R=C=D=S=1的方阵构成的线性空间具有什么样的性质? 类似于构造n维欧氏空间的标准基,利用0和1我们来构造一些R=C=D=S=1的最简单的方阵。 1在第一行中共有4种取法,为保持上述性质的成立,第二行中的1还有两种取法。当第二行的1也取定后,第三行与第四行的1就完全定位了,故一共可作出8个不同的最简方阵,称之为基本魔方并记之为Q1,… ,Q8

显然, Dürer空间(简称D空间)中任何一个元素都可以用Q1,Q2,…,Q8来线性表示,但它们能否构成D空间的一组基呢?   显然, Dürer空间(简称D空间)中任何一个元素都可以用Q1,Q2,…,Q8来线性表示,但它们能否构成D空间的一组基呢?

容易看出: Q1,…,Q8这8个基本方是线性相关的,即至少存在一个Qj,可以通过其它7个基本方的线性组合得到。这8个基本方的地位是等同的,故可不妨设j=8。下面验证Q1,Q2,…,Q7是否线性相关。 令: ,即 =

= 等号两边对应元素相比较,得r1=r2=…=r7=0, 所以 是线性无关 是D空间的最小生成集。 所以 是线性无关 是D空间的最小生成集。 研究Albrecht Dürer铸造的铜币 令D 即解方程组: = 解得 D=

The End