电路基础 第一章 基本概念和基本规律 上海交通大学本科学位课程.

Slides:



Advertisements
Similar presentations
2009 套读自考本科简介 —— 抓住机遇,用知识改变命运 目 录 二、提升学历、提升自身素质的途径选择 三、高教自考和套读自考本科介绍 四、我校自考套读本科情况介绍 一、就业状况 五、我校今年招生专业介绍.
Advertisements

组长 : 章莹莹 组员 : 陆文嫣 舒翼 钱悠舜 谢瑞 婷. 东方明珠塔位于上海蒲东, 1991 年 7 月 30 日动 工, 1994 年 10 月 1 日建成。塔高 468 米,与外滩 的 “ 万国建筑博览群 ” 隔江相望,建设完成时, 列亚洲第一,世界第三高塔。 东方明珠塔由三根直径为 9 米的立柱、塔座、下.
我的家乡我的家乡 河北迁安河北迁安. 迁安市隶属于河北省, 位于河北省东北部,燕 山南麓,滦河岸边,地 理坐标为:东经 118°37′ ~ 118°55′ ,北 纬 39°51′ ~ 40°15′ 之间, 辖 12 个镇、 7 个乡、 1 个 街道,总面积 1208 平方 公里,截至 2011 年,总.
旅游景点分布介绍.  1 、自然景观  2 、人文景观  3 、展馆  4 、休闲度假.
小组成员 : 陈佳 张美蓉 边疆 吴程 阮宇博 郭聪. 仙都 ,位于缙云县境内,是一 处以峰岩奇绝、山水神秀为特色、 融田园风光与人文史迹为一体, 以观光、休闲、度假和科普为主 的国家级重点风景名胜区、国家 首批 AAAA 级旅游区。境内九 曲练溪、十里画廊;山水飘逸、 云雾缭绕。有奇峰一百六、异洞.
1 認識創業之財務 ( 資金 ) 及稅務問題 講師 : 蘇炳章 日期 : 92 年 8 月 12 日.
1 债券融资业务拓展交流 债券业务部 二 O 一二年二月. 2 目 录  第一部分 债券融资业务概述  第二部分 东兴证券债券融资业务情况介绍及前景展望  第三部分 什么样的企业适合发债  第四部分 债券融资业务合作开发方式及激励探讨.
轴对称(一) 课堂引入 仔细观察下列图片,思考这些图片有什么样 的特点.
邵阳. 史称 “ 宝庆 ” 。位于湖南省 西南部,南接广西壮族自治 区桂林市。总面积 平 方公里,全市辖 3 个市辖区、 7 个县、 1 个自治县,代管 1 个 县级市。市人民政府驻大祥 区。是一座拥有 2500 多年历 史的古城 。 宝庆湖南桂林 有娄邵铁路与湘黔、京广 线相接,沪昆高速、
我的家乡我塑造 制作者:韩树涛.
创意鄱阳湖— 一种基于无形资源理念开发鄱阳湖的思考 以传奇背景音乐作为开场,体现创意创造传奇 南昌大学 黄细嘉
防盜裝置  學生科技探究.
饮食中的平衡 酸 性 食 物 与 碱 性 食 物.
期末書面報告指定書籍 王鼎鈞回憶錄---昨天的雲
高齡自主學習團體終身學習試辦計畫經費核銷
川信-丰盛系列集合资金信托计划 2016年3月.
古文選讀.
农信社信贷产品实务技能提升培训.
高齡者道路交通事故特性與道安防制措施 研究計畫報告
台北縣98年三鶯區語文研習 --建國國小 修辭與標點符號 福和國中廖惠貞
结合崇明建设生态岛和开发旅游景点开发的现状与问题
是重要的感觉器官,有许多感觉器,具触觉、嗅觉功能,还能感受异性的性信息素。 触角由柄节、梗节和鞭节三部分组成。
项目亮点 融资方为AA级发债主体,是当地唯一的综合平台公司
有三件事我很確定: 第一、愛德華是吸血鬼 第二、出於天性,他渴望喝我的血 第三、我無可救藥地愛上他了……
高考考试说明解读 --政治生活.
复习 什么是结构? 结构是指事物的各个组成部分之间的有序搭配和排列。
美丽麻城.
植物辨識及分類 呂春森 基隆市立暖暖高級中學 植物辨識及分類 呂春森 基隆市立暖暖高級中學.
第十一章 真理与价值 主讲人:阎华荣.
第三课 闲话“家”常 1.
肇庆七星岩.
“华东师大数学系部分老同事活动”(辛卯聚会)记事
第五节 读图表述.
財團法人中華民國證券櫃檯買賣中心 交 易 部 中華民國101年8月
第七章 固 定 资 产.
管理好种公鸡提高雏鸡质量.
走进 莱 芜 制作人:楠楠.
美丽青浦,古韵水乡 青浦一中 六(4)班 庄歆怡.
平湖市当湖高级中学 平湖市教育局教研室 (电话)
第2章 电路的分析方法 2.1 电源两种模型及其等效变换 2.2 基本定律 2.3 支路电流法 2.4 节点电压法 2.5 叠加原理
实验2 大规模直流电路的计算.
第三章 电阻电路的一般分析.
第三章 线性电路分析方法 简单电路:仅有一个独立节点或一个回路. 复杂电路:含有多个节点或回路。
第二章(1) 电路基本分析方法 本章内容: 1. 网络图论初步 2. 支路(电流)法 3. 网孔(回路)电流法 4. 节点(改进)电压法.
第3章 电路分析的基本方法 3.1 支路电流法 3.2 网孔电流法 3.3 节点电压法 3.4 回路分析法和割集分析法
内容要点: 目的与要求: 电路的作用和组成部分 电路模型 电流和电压的参考方向 电路的基本定律 电源及其等效模型 电路参数的计算 支路电流法
*4.4 矩阵分析法 标准支路 设每个标准支路共由一个电阻、一个独立电压源和一个独立电流源组成,其一般形式如图4-16所示。其中允许uSk = 0或iSk = 0。 图
腾冲叠水河瀑布 和来凤山公园 音乐:贝多芬——F大调浪漫曲 摄影、制作:曹珏 陈晓芬.
邵阳文化.
凤凰古城 公共管理学院李靖涛 学号
企业所得税年度申报表讲解 —— 特别行业.
基本电路理论 第四章 电阻性网络的一般分析与网络定理 上海交通大学本科学位课程 电子信息与电气工程学院2004年7月.
中国古代史中考复习方略 石城二中 黄北京.
公務員廉政倫理規範.
穩定是指偏離平衡時能夠回復平衡的特性,控制則是改變飛行狀態的機制。
組 員: 王 新 惠 吳 映 暄 李 盈 慧 廖 香 涵 盧 姵 華 訪談日期:
行政院國軍退除役官兵輔導委員會 嘉義榮民醫院.
人无信不立 业无信不兴 公路建设市场信用体系 建设综述 交通运输部公路局 交通运输部公路局
1.9 Tellgen定理 i1 i2 即 [u1 u2````` ub ] = 0 ib  uk ik = 0
第四章 电 路 定 理.
排容原理 機率概念與應用網路學習研究.
公立學校教職員退休資遣撫卹條例重點說明 苗栗縣政府人事處編製 主講人:陳處長坤榮 107年5月2日.
第4章 非线性直流电路 4.1 非线性二端电阻元件 I U.
3.10 不含独立源的单口网络 不含独立源的单口网络 I N + U —.
06 无形资产投资环节的会计处理.
地球的芳鄰 月 球.
組員:.
職業學校課程綱要發展指導委員會第2次會議 職業學校課程綱要總綱 修訂說明報告 計畫主持人:國立臺灣科技大學 蔡顯榮主任.
知识点:交流接触器的结构和工作原理 主讲教师:冯泽虎.
 主講人:楊文明主任委員   106/06/30 中華電信職工福利委員會台北分會業務簡介.
Presentation transcript:

电路基础 第一章 基本概念和基本规律 上海交通大学本科学位课程

能正确和熟练地应用KCL和KVL列写电路方程 §1.2 基尔霍夫定律 基本要求: 牢固掌握基尔霍夫定律 能正确和熟练地应用KCL和KVL列写电路方程

§1.2 基尔霍夫定律 基尔霍夫定律概括了电路中电流和电压分别遵循的基本规律,是用以分析和计算电路的基本依据。 §1.2 基尔霍夫定律 基尔霍夫定律概括了电路中电流和电压分别遵循的基本规律,是用以分析和计算电路的基本依据。 KCL适用于电路中的任一“节点”, KVL适用于电路中的任一“回路”。 1、有关术语 (1)支路:二端元件 (2)节点:元件的端点 (3)回路:电路中任一闭合路经 (4)网孔:内部不含组成回路以外支路的回路 (5)网络:含元件较多的电路

§1.2 基尔霍夫定律 网孔的概念仅适用于平面电路。平面电路是指支路间没有交叉点的电路。右图为非平面电路。

§1.2 基尔霍夫定律 2、基尔霍夫电流定律 (基尔霍夫第一定律) KCL 对于任一集中参数电路中的任一节点,在任一瞬间,流出(或流入)该节点的所有支路电流的代数和等于零。 KCL反映了电路中会合到任一节点的各电流间相互约束关系。

§1.2 基尔霍夫定律 请同学们现在列写 根据KCL写出的电路方程称为KCL方程 §1.2 基尔霍夫定律 对右图所示电路应用KCL, 取流出节点的支路电流为正,流入节点的支路电流为负,则有 请同学们现在列写 根据KCL写出的电路方程称为KCL方程 KCL的实质是电流连续性原理在集中参数电路中的表现。所谓电流连续性:在任何一个无限小的时间间隔里,流入节点和流出节点的电流必然是相等的,或在节点上不可能有电荷的积累,即每个节点上电荷守恒。

§1.2 基尔霍夫定律 KCL的重要性和普遍性还体现在该定律与电路中元件的性质无关,即不管电路中的元件是R、L、C、M、受控源、电源,也不管这些元件是线性、时变、非时变、… KCL的也适用于广义节点,即适合于一个闭合面。右图所示电路,根据KCL设流入节点的电流为负,则 -i1-i2-i3=0 应用KCL时必须注意和电流的两套符号打交道。

§1.2 基尔霍夫定律 3、基尔霍夫电压定律 对于任一集中参数电路中的任一回路,在任一瞬间,沿该回路的所有支路电压的代数和等于零。 §1.2 基尔霍夫定律 3、基尔霍夫电压定律 (基尔霍夫第二定律)KVL 对于任一集中参数电路中的任一回路,在任一瞬间,沿该回路的所有支路电压的代数和等于零。 KVL反映了回路中各支路电压间的相互约束关系。 应用KVL时,应指定回路的绕行方向(可任意选取,可取顺时针方向,也可取逆时针方向)。当支路电压的参考方向与回路绕行方向一致时,该支路电压取正号,反之取负号。

§1.2 基尔霍夫定律 请同学们现在列写 根据KVL写出的电路方程称为KVL方程 §1.2 基尔霍夫定律 对右图所示电路应用KVL, 取支路电压方向与回路方向一致时为正,否则为负,则有: 请同学们现在列写 根据KVL写出的电路方程称为KVL方程 KVL实质上是能量守恒定律在集中参数电路中的反映。单位正电荷在电场作用下,由任一点出发,沿任意路经绕行一周又回到原出发点,它获得的能量(即电位升)必然等于在同一过程中所失去的能量(即电位降)。

§1.2 基尔霍夫定律 例:右图所示电路中Ec=12V,Rc=5kΩ,Re=1 kΩ,Ic=1mA,Ib=0.02mA, §1.2 基尔霍夫定律 KVL的重要性和普遍性也体现在该定律与回路中元件的性质无关。 KCL 、KVL只对电路中各元件相互连接时,提出了结构约束条件。因此,对电路只要画出线图即可得方程。 例:右图所示电路中Ec=12V,Rc=5kΩ,Re=1 kΩ,Ic=1mA,Ib=0.02mA, 求:Uce及c点、e点的电位c、 e。 请同学们现在求解

§1.3 从网络到图 基本要求: 初步建立网络图论的概念 图、连通图和子图的概念 树、回路和割集的概念 树的选取,基本回路和基本割集的选取

§1.3 从网络到图 1、网络图论概论 图论是数学领域中一个十分重要的分支,这里所涉及的只是图论在网络中的应用,称网络图论。网络图论也称网络拓扑。 为在计算机上系统地列出一个复杂网络的方程以便分析,就要用到网络图论和线性代数的一些概念。 随着计算机的发展,网络图论已成为计算机辅助分析中很重要的基础知识,也是网络分析、综合等方面不可缺少的工具。

§1.3 从网络到图 2、图及其概念 图论是数学家欧拉创始的。1736年欧拉解决了有名的难题,肯尼希堡城七桥问题。该镇的普雷格尔河中有两个小岛,共有七座桥与两岸彼此连通,问题:从陆地或岛上任一地方开始,能否通过每座桥一次且仅仅一次就能回到原地。 欧拉用顶点表示陆地区域,用联接相应顶点的线段表示各座桥(如左图),于是七桥问题就变为一道数学问题:在左图中是否可能连续沿各线段,从某一始点出发只经过各线段一次且仅仅一次又回到出发点,即是否存在一条“单行曲线”。

附录:欧拉(Euler)   欧拉(Euler),瑞士数学家及自然科学家。1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国彼得堡去逝。欧拉出生於牧师家庭,自幼受父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获硕士学位。   欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学中的经典著作。

§1.3 从网络到图 欧拉得出了一般结论,即存在单行曲线的必要、充分条件是奇次顶点(联接于顶点的线段数为奇数)的数目为0。显然右图不满足此条件,因此,七桥问题的答案是否定的。 在七桥问题中,欧拉用点表示陆地,用线段表示桥。图论中,把一些事物及其之间的联系用点和连接于点与点之间的线段来表示,因此,图就是一些点与线段的集合。

§1.3 从网络到图 在网络图中,将支路用线段表示,支路间的连接用点表示。 网络图论中的一条标准支路

§1.3 从网络到图 右图网络的网络图中包含有两个独立部分。虽然网络中存在互感,但在网络图中并不反映出磁耦合M,因为M属于网络中支路的特性,而不属于网络图的性质。 一个网络图可以有多个独立部分。 左面两个图,上面的图中包含有一个单独节点,下面的图中有一条支路的两端终止在同一个节点上,称“自环”。这些情况都属于图,但对“自环”图,将不作讨论。

§1.3 从网络到图 网络图:一组节点和一组支路的集合,且每条支路的两端终止在两个节点上(排除了“自环”情况) §1.3 从网络到图 网络图:一组节点和一组支路的集合,且每条支路的两端终止在两个节点上(排除了“自环”情况) 有向图:若图中的一组支路都标有方向,则这样的图称有向图。 子图:存在网络图G,若G1中的每个节点和每条支路就是G中的节点和支路,则G1是G的子图。也即若存在图G,则可从G中删去某些支路或某些节点,得到子图G1。

§1.3 从网络到图 连通图与非连通图: 当图G的任意两个节点之间至少存在着一条由支路构成的通路,这样的图就称连通图,如左上图,否则就是非连通图,如左中图和左下图所示。 一个连通图也可以说成是一个独立部分,一个非连通图至少有两个独立部分,而每个独立部分又是一个连通的子图。

§1.3 从网络到图 回路:回路是一条闭合的路经。确切地说,有图G,存在一个子图G1,且 ①G1是连通的, §1.3 从网络到图 回路:回路是一条闭合的路经。确切地说,有图G,存在一个子图G1,且 ①G1是连通的, ②G1中与每个节点关联的支路数恰好是2条。 对每个回路,可根据KVL,写出Σu=0 的回路方程。

§1.3 从网络到图 树:一个连通图G的一个子图,如果满足下列条件就称为G的一棵树:①连通的,②没有回路,③包括G的全部节点。 §1.3 从网络到图 树:一个连通图G的一个子图,如果满足下列条件就称为G的一棵树:①连通的,②没有回路,③包括G的全部节点。 构成树的支路称树支,其余的支路称连支。右图中1、2、3号支路与所有节点构成树T,4、5、6号支路为连支。 左图中2、4、6号支路与全部节点构成树T,1、3、5号支路为连支。

§1.3 从网络到图 同一个图G,可选择不同的树。设图G有n个节点,如果任意两个节点之间都有一条支路联接,则可选出nn-2个不同的树。 §1.3 从网络到图 同一个图G,可选择不同的树。设图G有n个节点,如果任意两个节点之间都有一条支路联接,则可选出nn-2个不同的树。 右图中有n = 4个节点,所以可找到42 = 16种树(树数的一般计算式子为detAAT,其中A为图的降阶关联矩阵)。

§1.3 从网络到图 割集:割集是一组不包括节点的支路集合。有一连通图G,存在一组支路集合,如果留下任一支路不取掉,则剩下的图仍然是连通的,换言之,割集是一极小支路集。 取走割集将使连通图分成两个独立部分,可以抽象地用高斯面(闭合面)将某一独立部分包围起来,由高斯面所切割的一组支路,就是割集。 左图所示高斯面切割的1、4、5号支路构成割集。

§1.3 从网络到图 在网络图中,可以将闭合面看作一个广义节点。根据KCL,流出或者流入高斯面的支路电流的代数和为零,即流经一组割集的电流的代数和为零  Σi=0 闭合面如何封闭是任意的(这主要是观察位置不同,若在图内观察,则高斯面把圈外部分闭合),封闭面一旦闭合,一般以流出高斯面的电流为正,流入为负,因此也可认为割集有方向,一般取由闭合面里面指向外面为正方向。

§1.3 从网络到图 有些图,某些割集不便用高斯面,如下左图中的1、2、3、4号支路就不能用高斯面切割,这时可改变一下图的画法。 §1.3 从网络到图 有些图,某些割集不便用高斯面,如下左图中的1、2、3、4号支路就不能用高斯面切割,这时可改变一下图的画法。 有些图,与高斯面相交的支路集不是割集。如右图中的支路1、2、3、4,当这些支路取走后,将出现三个独立部分。一般来说,如果图G具有S个独立部分,取走一组割集后,图所应具有S+1个独立部分。

§1.3 从网络到图 3、图论的基本定理 在G的任何两个节点之间,总有由T的树支组成的唯一路经。 §1.3 从网络到图 3、图论的基本定理 若给定一个具有nt个节点,b条支路的连通图G及G的一个树T。 在G的任何两个节点之间,总有由T的树支组成的唯一路经。 若不考虑根节点(或起始节点),每条树支都有一个终止节点,则树支数n=nt-1,连支数l=b- ( nt-1)=b-nt+1 每条连支都可以和一些树支构成一个唯一的回路(因为树本身没有回路,增加一条连支,就可得一个回路),即l= b-nt+1个回路,并称单连支回路(也称基本回路)。

§1.3 从网络到图 每条树支都能和一些连支构成唯一的割集,共有n=nt-1个单树支割集(基本割集)(∵树本身是连通的,当取走一条树支后,树就分成两个独立部分,∴一条树支和一些连支能构成一个割集) 一个网络的网络图有nt-1个基本割集,运用KCL可得nt-1个独立的基本割集方程。 一个网络的网络图有b-nt+1个基本回路,由KVL可得b-nt+1个独立的基本回路方程。 每条支路都有一个支路约束方程,b条支路就有b个约束方程。

§1.3 从网络到图 因此,一个网络总共可以有2b个独立方程。 对每条支路来说,涉及两个网络变量,ik和uk,共有2b个变量。 §1.3 从网络到图 因此,一个网络总共可以有2b个独立方程。 对每条支路来说,涉及两个网络变量,ik和uk,共有2b个变量。 由于独立方程数和网络变量数相等,完全可由2b个独立方程求出2b个未知变量。

§1.4 KCL、KVL的矩阵形式 基本要求: 掌握关联矩阵和降阶关联矩阵 用降阶关联矩阵表示的KCL和KVL的矩阵形式

§1.4 KCL、KVL的矩阵形式 1、KCL的矩阵形式(系统分析方法) 右上图所示为一个直流电阻电路N,可得其拓扑图,如右下图所示。 从拓扑图中知,支路1与节点①和节点④关联,支路2与节点①和节点②关联,…,由此可以得到一个节点对支路的关联矩阵Aa

§1.4 KCL、KVL的矩阵形式 AaIb=0 关联矩阵 由左图,根据KCL,对每个节点列方程 Aa矩阵描述了图中节点对支路的关联关系,即Aa=(aik)

§1.4 KCL、KVL的矩阵形式 AaIb=0 就每条支路而言,电流总是从一个节点流入,从另一个节点流出,所以关联矩阵的每一列总有两个非零元素,一个是正1,一个是负1。因此,把Aa的全部行加起来将得到一行全为零,就是说, Aa的所有行不是线性独立的。 就电路方程组而言,只要把四个方程任意划去一个,剩下的三个方程就是线性无关的。因此,就Aa而言,只要划去任一行,所得矩阵就是线性独立的。

§1.4 KCL、KVL的矩阵形式 对电网络来说,总是把与参考节点对应的行划去,同样可得矩阵方程:AIb=0 ∴对nt个节点,b条支路的拓扑图而言,可得ntb阶关联矩阵Aa,Aa的秩为nt-1 在关联矩阵Aa中,任意划去一行,得矩阵A,其秩仍为nt-1,A 称为降阶关联矩阵。 对电网络来说,总是把与参考节点对应的行划去,同样可得矩阵方程:AIb=0

§1.4 KCL、KVL的矩阵形式 已知一网络图,可以求得Aa或A。同样,如果知道了Aa或A,也一定可得网络图。

§1.4 KCL、KVL的矩阵形式 Ub=ATEn 2、KVL的矩阵形式(系统分析方法) 设e1、e2、e3、e4为节点电位,u1、u2、u3、u4、u5为支路电压,并选择节点④为参考节点,即e4=0。根据KVL可得支路电压与节点电位间的关系。 Ub=ATEn

§1.5 特勒根定理 基本要求: 了解特勒根定理 了解特勒根定理和KCL、KVL的关系

§1.5 特勒根定理 特勒根定理是电路中最普遍的定理,它的不寻常之处在于,特勒根定理的导出只依据基尔霍夫两条定律,因此,不论元件的性质如何,激励的种类如何,特勒根定理总是成立的。 特勒根定理是特勒根于1952年正式提出的。特勒根定理是可以应用于非线性电路、时变电路的少数几个定理中的一个。

§1.5 特勒根定理 特勒根定理证明: 若电路降阶关联矩阵为A,则根据KVL有 对上式两边转置 两边右乘Ib得 根据KCL有AIb=0 §1.5 特勒根定理 对于具有 n个节点,b 条支路的电路,假定支路电压、电流取一致参考方向,电路中的支路电压向量Ub= (u1,u2,…,ub)T、支路电流向量 Ib= (i1,i2,…,ib)T 分别满足KVL和KCL,则 特勒根定理证明: 若电路降阶关联矩阵为A,则根据KVL有 对上式两边转置 两边右乘Ib得 根据KCL有AIb=0

§1.5 特勒根定理 可理解为各支路吸收的瞬时功率之和为0,即功率守恒,但它适用于结构相同的不同网络,所以称似功率守恒定律。 §1.5 特勒根定理 Ub和Ib并不要求是同一时刻的值 Ub和Ib可以从不同电路中测量得到,只要两个电路的结构相同,且不论各支路中的元件性质是否相同,即对N有Ub、Ib;对 有 、 则 可理解为各支路吸收的瞬时功率之和为0,即功率守恒,但它适用于结构相同的不同网络,所以称似功率守恒定律。