第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
积 分 的 应 用 不定积分的应用 定积分的应用 第四章 微分方程 不定积分的应用 第 一 节第 一 节 学习重点 微分方程的概念 一阶微分方程的求解.
优化备课和讲课 的思考 黄恕伯
§3.4 空间直线的方程.
第12讲 向量空间,齐次线性方程组的结构解 主要内容: 1. 向量空间 (1) 向量空间的定义 (2) 向量空间的基
高等代数与空间解析几何 第一章 n阶行列式 1.1 n阶行列式 二阶、三阶行列式 n阶行列式的概念来源于对线性方程组的研究:
国家精品课 线性代数与空间解析几何 王宝玲 哈工大数学系代数与几何教研室
3.4 空间直线的方程.
勝過這世界 我能勝過這世界 因有耶穌在我心 黑暗權勢已破碎 因耶穌基督寶血. 勝過這世界 我能勝過這世界 因有耶穌在我心 黑暗權勢已破碎 因耶穌基督寶血.
校務會議 業 務 報 告 教官室 主任教官: 廖世文 中校 99/06/25.
代数方程总复习 五十四中学 苗 伟.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
8.2消元 解二元一次方程组(1) 点击页面即可演示.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
绪 论 一、课程内容 线性代数是是中学代数的继续和发展。
第一节 二阶与三阶行列式 线性代数 扬州大学数学科学学院.
*第七节 二元高次方程组 主要内容 两个一元多项式有非常数公因式的条件 二元高次方程组的一个一般解法.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
95課綱 歷史科第二冊(中國史) 第三單元(章) 近世發展(宋、元明、清) 第三主題(節) 士紳社會與庶民文化
第二章 行列式 行列式的定义与性质 行列式的计算 Cramer 法则 解线性方程组的消元法 消去法的应用.
理 想 理想是大海的航标, 指引你前进的方向; 理想是闪闪的明灯, 照亮你前进的航程; 理想是生命的动力,帮助你战胜困难;
高中生职业生涯规划 河南省淮滨高级中学 朱凯
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
材料作文审题立意训练.
。星。星。の。承。諾。 6年15班 7號 張靖旋 作者:不明.
四种命题 2 垂直.
1.1.3四种命题的相互关系 高二数学 选修2-1 第一章 常用逻辑用语.
第二章 行列式 第一节 二阶、三阶行列式.
喜愛大自然的老師----段秋華.
班級:電資一 組長:程英傑 組員:黃智駿、廖夢溪、李金霖 黃粵丞、蘇長益 指導老師:陳美美 老師
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
§4.3 常系数线性方程组.
加减法解二元一次方程组 肇庆市睦岗镇大龙学校 彭素冉.
本章涉及的主要问题: 汇票中的出票、背书、 票据种类 承兑、保证行为 票据行为 汇票中的付款和追索 票据权利及其内容 有关本票的制度
第3讲 线性方程组的高斯求解方法 主要内容: 1. 线性方程组的高斯求解方法 2. 将行阶梯形矩阵化为行最简形矩阵.
线性代数机算与应用 李仁先 2018/11/24.
3.7叠加定理 回顾:网孔法 = 解的形式:.
元素替换法 ——行列式按行(列)展开(推论)
第2讲 线性方程组解的存在性 主要内容: 1. 线性方程组的解 2.线性方程组的同解变换与矩阵的初等行变换
I. 线性代数的来龙去脉 -----了解内容简介
第二章 矩阵及其运算 §1 线性方程组和矩阵 §2 矩阵的运算 §3 逆矩阵 §4 克拉默法则 §5 矩阵分块法.
第一章 行 列 式 在初等数学中,我们用代入消元法或加减消元法求解 二元和三元线性方程组,可以看出,线性方程组的解完
第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: 第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: (1) n个未知数的齐次线性方程组Ax.
第一章 函数与极限.
Partial Differential Equations §2 Separation of variables
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时7分 / 45.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
B2B -- 99/09/01 ~ 99/11/10異動項目 1.公告區 1-1 登入首頁連結到公告區,將原登入資訊加到公告區
第三章复习及习题课.
§4 线性方程组的解的结构.
§3 向量组的秩.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
1.2 子集、补集、全集习题课.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
§2 方阵的特征值与特征向量.
第五节 线性方程组有解判别定理 一、线性方程组的向量表示形式 二、线性方程组有解判别定理 三、一般线性方程组的解法 四、线性方程组的求解步骤.
第三章 矩 阵的秩和线性方程组的相容性定理 第一讲 矩阵的秩;初等矩阵 第二讲 矩阵的秩的求法和矩阵的标准形 第三讲 线性方程组的相容性定理.
加减消元法 授课人:谢韩英.
第10章 代数方程组的MATLAB求解 编者.
第一节 矩阵的初等变换 一、消元法解线性方程组 二、矩阵的初等变换 三、初等矩阵的概念 四、初等矩阵的应用.
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
一元一次方程的解法(-).
Presentation transcript:

第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式 第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式 称为n元线性方程组(Ⅰ)的系数行列式

Cramer定理 定理3(Cramer定理) 如果线性方程组(Ⅰ)的系数行列式 D不等于零那么方程组(Ⅰ)有唯一解,且解可用行列式表示为 其中Dj (j1 2     n)是把系数行列式D中第j列的元素a1j a2j     anj对应地换为方程组的常数项b1 b2     bn后所得到的n阶行列式,即 (j1 2   n)

Cramer定理 如果线性方程组的系数行列式D不等于零 则方程组有唯一解xjDj/D(j1 2   n) 例17 解 因为 D27 D181 提示 27 81

Cramer定理 如果线性方程组的系数行列式D不等于零 则方程组有唯一解xjDj/D(j1 2   n) 例17 解 因为 D27 D181 D2108 提示 27 108

Cramer定理 如果线性方程组的系数行列式D不等于零 则方程组有唯一解xjDj/D(j1 2   n) 例17 解 因为 D27 D181 D2108 D327 提示 27 27

Cramer定理 如果线性方程组的系数行列式D不等于零 则方程组有唯一解xjDj/D(j1 2   n) 例17 解 因为 D27 D181 D2108 D327 D427 提示 27 27

Cramer定理 如果线性方程组的系数行列式D不等于零 则方程组有唯一解xjDj/D(j1 2   n) 例17 解 因为 D27 D181 D2108 D327 D427 所以 所给方程组的唯一解为

Cramer定理的逆否命题为: 线性方程组(Ⅰ)无解或解不唯一,则其系数行列式 定理4 D=0. 当线性方程组(Ⅰ)的常数项b1=b2=   =bn=0时 线性方程组(Ⅰ) 为 (Ⅱ) 方程组(Ⅱ)叫做n元齐次线性方程组.相应地,线性方程组(Ⅰ)右端的常数项b1 b2     bn不全为零时,线性方程组(Ⅰ)叫做n元非齐次线性方程组. 如果齐次线性方程组(Ⅱ)的系数行列式D0 则齐次线性方程组(Ⅱ)只有零解(没有非零解). 定理5

注意:线性方程组(Ⅱ)无论D是否为零,都有零解(解全为零).但D0时,只有唯一零解;D=0时,除零解外,还有其它的解,这个问题以后还会讨论 例18 设齐次线性方程组 只有零解,求λ的值. 解 系数行列式

解 系数行列式 故