第四章 非平稳序列的确定性分析.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学 统计与管理学院.
3.2.平稳性检验的单位根方法 单位根检验方法 DF检验 ADF检验 PP检验 KPSS检验 ERS检验 NP检验.
一致预期数据(Consensus Data)
10 时间序列预测法 10 时间序列预测法 教学目标 关键词汇
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
Tel: 第八章 时间序列分析 周早弘 旅游与城市管理学院
常用逻辑用语复习课 李娟.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
走势分析.
应用运筹学 第六章 预测技术与概率统计 浙江大学管理学院 杜红 博士 副教授.
第七章 时间序列预测法.
第三章 物流市场营销信息管理 第三节 物流市场营销预测 定量预测法
第十章 时间序列的特性.
第二节 时间序列的构成与分解 地学现象发展变化过程中受到诸多因素的共同影响,指标值是这些因素共同作用的综合反映。
时间序列分析与预测 第二讲:时间序列模型 大连理工大学经济系 原毅军.
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
第二章 经济时间序列的 季节调整、分解与平滑
不确定度的传递与合成 间接测量结果不确定度的评估
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
目 录 《应用时间序列分析》 第一章 时间序列分析简介 第二章 时间序列的预处理 第三章 平稳时间序列分析 第四章 非平稳序列的确定性分析
ARIMA模型在电量预测中的应用 蔡跳
第三章 平稳时间序列分析.
第12章 回归直线.
第六章 多元时间序列分析.
非平稳和季节时间序列模型分析方法 在第四章中,我们介绍了非平稳时间序列模型,但是在前面的讨论中,对于时间序列的特性分析,以及模型的统计分析都集中于平稳时间序列问题上。本章将介绍几个非平稳时间序列的建模方法,并且分析不同的非平稳时间序列模型的动态性质。 上海财经大学 统计学系.
第五章 非平稳序列的随机分析.
第十章 方差分析.
数据挖掘工具性能比较.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
第一章 函数与极限.
Partial Differential Equations §2 Separation of variables
顺序表的删除.
模型分类问题 Presented by 刘婷婷 苏琬琳.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
用计算器开方.
2019/5/4 实验三 离散傅立叶变换的性质及应用 06:11:49.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第4课时 绝对值.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
静定结构位移计算 ——应用 主讲教师:戴萍.
2019/5/21 实验一 离散傅立叶变换的性质及应用 实验报告上传到“作业提交”。 11:21:44.
概率论与数理统计B.
§7.3 离散时间系统的数学 模型—差分方程 线性时不变离散系统 由微分方程导出差分方程 由系统框图写差分方程 差分方程的特点.
2.3.运用公式法 1 —平方差公式.
实验二 基尔霍夫定律 510实验室 韩春玲.
滤波减速器的体积优化 仵凡 Advanced Design Group.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
回归分析实验课程 (实验三) 多项式回归和定性变量的处理.
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第三章 平稳时间序列分析.
3.2 平面向量基本定理.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
本底对汞原子第一激发能测量的影响 钱振宇
线性规划 Linear Programming
数学模型实验课(二) 最小二乘法与直线拟合.
§4.5 最大公因式的矩阵求法( Ⅱ ).
混沌保密通讯 实验人 郝洪辰( ) 李 鑫( ).
Presentation transcript:

第四章 非平稳序列的确定性分析

本章结构 时间序列的分解 确定性因素分解 趋势分析 季节效应分析 综合分析 X-11过程

4.1 时间序列的分解 Wold分解定理 Cramer分解定理

Wold分解定理(1938) 对于任何一个离散平稳过程 它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的,另一个为随机性的,不妨记作 其中: 为确定性序列, 为随机序列, 它们需要满足如下条件 (1) (2) (3)

确定性序列与随机序列的定义 对任意序列 而言,令 关于q期之前的序列值作线性回归 其中 为回归残差序列, 。 确定性序列,若 随机序列,若

ARMA模型分解 随机序列 确定性序列

Cramer分解定理(1961) 任何一个时间序列 都可以分解为两部分的叠加:其中一部分是由多项式决定的确定性趋势成分,另一部分是平稳的零均值误差成分,即 确定性影响 随机性影响

对两个分解定理的理解 Wold分解定理说明任何平稳序列都可以分解为确定性序列和随机序列之和。它是现代时间序列分析理论的灵魂,是构造ARMA模型拟合平稳序列的理论基础。 Cramer 分解定理是Wold分解定理的理论推广,它说明任何一个序列的波动都可以视为同时受到了确定性影响和随机性影响的综合作用。平稳序列要求这两方面的影响都是稳定的,而非平稳序列产生的机理就在于它所受到的这两方面的影响至少有一方面是不稳定的。

4.2确定性因素分解 传统的因素分解 长期趋势 循环波动 季节性变化 随机波动 现在的因素分解 长期趋势波动 季节性变化 随机波动

确定性时序分析的目的 克服其它因素的影响,单纯测度出某一个确定性因素对序列的影响 推断出各种确定性因素彼此之间的相互作用关系及它们对序列的综合影响

4.3趋势分析 目的 有些时间序列具有非常显著的趋势,我们分析的目的就是要找到序列中的这种趋势,并利用这种趋势对序列的发展作出合理的预测 常用方法 趋势拟合法 平滑法

趋势拟合法 趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法 分类 线性拟合 非线性拟合

线性拟合 使用场合 长期趋势呈现出线形特征 模型结构

例4.1:拟合澳大利亚政府1981——1990年每季度的消费支出序列

线性拟合 模型 参数估计方法 最小二乘估计 参数估计值

拟合效果图

非线性拟合 使用场合 参数估计指导思想 长期趋势呈现出非线形特征 能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计 实在不能转换成线性的,就用迭代法进行参数估计

常用非线性模型 模型 变换 变换后模型 参数估计方法 线性最小二乘估计 - 迭代法

例4.2: 对上海证券交易所每月末上证指数序列进行模型拟合

非线性拟合 模型 变换 参数估计方法 线性最小二乘估计 拟合模型口径

拟合效果图

平滑法 平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律 常用平滑方法 移动平均法 指数平滑法

移动平均法 基本思想 假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值 分类 n期中心移动平均 n期移动平均

n期中心移动平均 5期中心移动平均

n期移动平均 5期移动平均

移动平均期数确定的原则 事件的发展有无周期性 对趋势平滑的要求 对趋势反映近期变化敏感程度的要求 以周期长度作为移动平均的间隔长度 ,以消除周期效应的影响 对趋势平滑的要求 移动平均的期数越多,拟合趋势越平滑 对趋势反映近期变化敏感程度的要求 移动平均的期数越少,拟合趋势越敏感

移动平均预测

例4.3 某一观察值序列最后4期的观察值为: 5,5.5,5.8,6.2 (1)使用4期移动平均法预测 。 (1)使用4期移动平均法预测 。 (2)求在二期预测值 中 前面的系数等于多少?

例4.3解 (1) (2) 在二期预测值中 前面的系数等于

指数平滑法 指数平滑方法的基本思想 在实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。为了更好地反映这种影响作用,我们将考虑到时间间隔对事件发展的影响,各期权重随时间间隔的增大而呈指数衰减。这就是指数平滑法的基本思想 分类 简单指数平滑 Holt两参数指数平滑

简单指数平滑 基本公式 等价公式

经验确定 初始值的确定 平滑系数的确定 一般对于变化缓慢的序列, 常取较小的值 对于变化迅速的序列, 常取较大的值 经验表明 的值介于0.05至0.3之间,修匀效果比较好。

简单指数平滑预测 一期预测值 二期预测值 期预测值

例4.4 对某一观察值序列 使用指数平滑法。 已知 , ,平滑系数 (1) 求二期预测值 。 (2)求在二期预测值 中 前面的系数等于多少?

例4.4解 (1) (2) 所以使用简单指数平滑法二期预测值中 前面的系数就等于平滑系数

Holt两参数指数平滑 使用场合 适用于对含有线性趋势的序列进行修匀 构造思想 假定序列有一个比较固定的线性趋势 两参数修匀

初始值的确定 平滑序列的初始值 趋势序列的初始值

Holt两参数指数平滑预测 期预测值

bx[1]=x[1] r[1]=(x[n]-x[1])/(n-1) for(in in 2:n) { bx[i]=a*x[i]+(1-a)*(bx[i-1]+r[i-1]) r[i]=b*(bx[i]-bx[i-1])+(1-b)*r[i-1] }

例4.5 对北京市1978——2000年报纸发行量序列进行Holt两参数指数平滑。指定

例4.5平滑效果图

x<- c(51259,63565,75095,78371,78984,86499,98628,99941,103630,109547,113375,82999,87489,94339,114824,127791,114373,112577,136308,140870,148039,146395)

x<- c(51259,63565,75095,78371,78984,86499,98628,99941,103630,109547,113375,82999,87489,94339,114824,127791,114373,112577,136308,140870,148039,146395)

4.3 季节效应分析 【例4.6】以北京市1995年——2000年月平均气温序列为例,介绍季节效应分析的基本思想和具体操作步骤。

时序图

x<-scan() -0.7 2.1 7.7 14.7 19.8 24.3 25.9 25.4 19 14.5 -0.4 -2.2 6.2 14.3 21.6 25.5 23.9 20.7 12.8 4.2 0.9 -3.8 1.3 8.7 20 24.6 28.2 26.6 18.6 14 5.4 -1.5 -3.9 2.4 7.6 15 19.9 23.6 26.5 25.1 22.2 14.8 4 0.1 -1.6 2.2 4.8 14.4 19.5 28.1 25.6 20.9 13 5.9 -0.6 -6.4 8.1 14.6 20.4 26.7 29.6 25.7 21.8 12.6 3

季节指数 季节指数的概念 所谓季节指数就是用简单平均法计算的周期内各时期季节性影响的相对数 季节模型

季节指数的计算 计算周期内各期平均数 计算总平均数 计算季节指数

季节指数的理解 季节指数反映了该季度与总平均值之间的一种比较稳定的关系 如果这个比值大于1,就说明该季度的值常常会高于总平均值 如果这个比值小于1,就说明该季度的值常常低于总平均值 如果序列的季节指数都近似等于1,那就说明该序列没有明显的季节效应

例4.6季节指数的计算

xm=matrix(c(x),12,6) xm.rm=apply(xm,1,mean) xm.s=xm.rm/mean(x) xm.m=cbind( xm, xm.rm, xm.s) ts.plot(xm.s)

例4.6季节指数图

综合分析 常用综合分析模型 加法模型 乘法模型 混合模型

例4.7 对1993年——2000年中国社会消费品零售总额序列(数据见附录1.11)进行确定性时序分析。

(1)绘制时序图

y<-scan() 977.5 892.5 942.3 941.3 962.2 1005.7 963.8 959.8 1023.3 1051.1 1102 1415.5 1192.2 1162.7 1167.5 1170.4 1213.7 1281.1 1251.5 1286 1396.2 1444.1 1553.8 1932.2 1602.2 1491.5 1533.3 1548.7 1585.4 1639.7 1623.6 1637.1 1756 1818 1935.2 2389.5 1909.1 1911.2 1860.1 1854.8 1898.3 1966 1888.7 1916.4 2083.5 2148.3 2290.1 2848.6 2288.5 2213.5 2130.9 2100.5 2108.2 2164.7 2102.5 2104.4 2239.6 2348 2454.9 2881.7 2549.5 2306.4 2279.7 2252.7 2265.2 2326 2286.1 2314.6 2443.1 2536 2652.2 3131.4 2662.1 2538.4 2403.1 2356.8 2364 2428.8 2380.3 2410.9 2604.3 2743.9 2781.5 3405.7 2774.7 2805 2627 2572 2637 2645 2597 2636 2854 3029 3108 3680

(2)选择拟合模型 长期递增趋势和以年为固定周期的季节波动同时作用于该序列,因而尝试使用混合模型(b)拟合该序列的发展

(3)计算季节指数 月份 季节指数 1 0.982 7 0.929 2 0.943 8 0.940 3 0.920 9 1.001 4 0.911 10 1.054 5 0.925 11 1.100 6 0.951 12 1.335

ym=matrix(c(y),12,length(y)/12) ym.rm=apply(ym,1,mean) ym.s=ym.rm/mean(y) ym.m=cbind(ym,ym.rm,ym.s) ts.plot(ym.s)

ym.r=c(ym.m[,1:8]/ym.s) ts.plot(ym.r) x.r=c(1:length(ym.r)) y.lm=lm(ym.r~x.r) lines(x.r,fitted(lm(ym.r~x.r)),col="red") plot(y.lm)

季节指数图

par(mfrow=c(3,1)) ts.plot(resid(y.lm)) acf(resid(y.lm)) pacf(resid(y.lm)) Box.test(resid(y.lm),lag=6)

S<-c(matrix(1,12,8)*ym.s) y.hat=fitted(lm(ym.r~x.r))*S ts.plot(y) lines(y.hat,col="red") new <- data.frame(x.r = c((length(y)+1):(length(y)+12)))

y.hatn=c(y.hat,predict(y.lm,new)*ym.s) ts.plot(y.hatn,col="green") lines(y) lines(y.hat,col="red")

季节调整后的序列图

(4)拟合长期趋势

(5)残差检验

(6)短期预测

X-11过程 简介 因素分解 模型 X-11过程是美国国情调查局编制的时间序列季节调整过程。它的基本原理就是时间序列的确定性因素分解方法 长期趋势起伏 季节波动 不规则波动 交易日影响 模型 加法模型 乘法模型

方法特色 普遍采用移动平均的方法 用多次短期中心移动平均消除随机波动 用周期移动平均消除趋势 用交易周期移动平均消除交易日影响

例4.7续 对1993年——2000年中国社会消费品零售总额序列使用X-11过程进行季节调整 选择模型(无交易日影响)

X11过程获得的季节指数图

季节调整后的序列图

趋势拟合图

随机波动序列图

par(mfrow=c(3,2)) ts.plot(y) ts.plot(ym.s) ts.plot(ym.r) yt=ym.r

for(i in 7:(length(y)-6)) yt[i]=(mean(ym.r[c((i-6):(i+5))])+mean(ym.r[c((i-5):(i+6))]))/2 ts.plot(yt) yr=ym.r/yt ts.plot(yr)