第十章 回归分析预测法 第一节 相关分析 第二节 一元线性回归预测法 第三节 多元线性回归预测法 第四节 非线性回归预测法.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
管理会计 财贸系 会计教研室 王凤锦.
第六章 回归分析.
生 物 统 计 学 第7章 回归与相关 彭司华 2016年5月.
第九章 金融资本 第一节 借贷资本和利息 第二节 货币需求与供给 第三节 股份资本 第四节 保险业资本 第五节 金融衍生产品.
第3章 数 据 处 理.
第十章 相关与回归分析 PowerPoint 统计学.
第六章 相关与回归分析 本章主要内容 1.相关分析的基本问题 2.相关关系的测度 3.回归分析的基本问题 4.回归分析模型的建立
§1 回归分析.
代数方程总复习 五十四中学 苗 伟.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
生物统计学 林隆慧.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
预测与决策分析 Forecasting and Decision Analysis
增值评价 2014级 初中起点报告 解读培训 辽宁省基础教育质量监测与评价中心.
学习风格差异.
相关与回归分析 目 录 一 相关分析概述 二 一元线性回归分析 小 结 三.
第十一章 预算控制 学习目的与要求:掌握全面预算的相关知识以及预算控制的几种形式
第七章 时间序列预测法.
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
田间试验和统计方法 第九章 直线回归与相关.
不确定度的传递与合成 间接测量结果不确定度的评估
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
课标教材下教研工作的 实践与思考 山东临沂市教育科学研究中心 郭允远.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
第十一章 线性相关与回归.
简单相关与回归 武汉大学.公共卫生学院 卫生统计学教研室.
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
第15章 相关分析与回归分析 (续).
曲线拟合 Curve fitting 2002级研究生《医学统计学》.
第一节 引言 第二节 一元线性回归模型 第三节 多元线性回归模型 第四节 虚拟变量回归模型 第五节 非线性回归模型 本章小节 主要内容.
第八章 相关分析和回归分析 第一节:相关的意义、概念和种类 第二节:相关图表和相关系数 第三节:回归分析
Applied Regression Analysis
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§3.3 多元线性回归模型的统计检验 一、拟合优度检验 二、方程的显著性检验(F检验) 三、变量的显著性检验(t检验) 四、参数的置信区间.
第二章 回归模型 法、参数的普通最小二乘估计式及相关性质、对模型的经济意 义检验和统计检验,能应用Eviews软件进行最小二乘估计与统
一元线性回归模型 § 1 回归分析概述 § 2 一元线性回归模型的参数估计 § 3 一元线性回归模型的统计检验
数学实验之 回归分析(1).
第2章 一元线性回归 2 .1 一元线性回归模型 2 .2 参数 的估计 2 .3 最小二乘估计的性质 2 .4 回归方程的显著性检验
回归分析.
第十章 方差分析.
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
第七章 参数估计 7.3 参数的区间估计.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
9.1 简单线性相关分析 9.2 一元线性回归分析 9.3 多元线性回归与复相关分析 9.4 变量间非线性关系的回归
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第13章收益管理 第1节营业收入 第2节税金与纳税筹划 第3节利润预测与计划.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第三章 两变量线性回归.
第四章 多元线性回归分析.
建模常见问题MATLAB求解  .
导 言 经济学的基本问题 经济学的基本研究方法 需求和供给.
概率论与数理统计B.
第八章 服務部門成本分攤.
回归分析实验课程 (实验三) 多项式回归和定性变量的处理.
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
3.1回归分析的基本思想及其初步应用(四) 高二数学 选修2-3 第三章 统计案例.
数学模型实验课(二) 最小二乘法与直线拟合.
Presentation transcript:

第十章 回归分析预测法 第一节 相关分析 第二节 一元线性回归预测法 第三节 多元线性回归预测法 第四节 非线性回归预测法

第一节 相关分析 一、相关分析的概念 1、相关关系 2、回归分析预测法 第一节 相关分析 一、相关分析的概念 1、相关关系 2、回归分析预测法 确定现象之间的变化规律,将现象之间的变化规律用数学模型表示出来,并利用数学模型进行预测的方法

3、相关分析与回归分析 区别: 相关分析——确定现象之间的相关方向和相关的密切程度 回归分析——对具有相关关系的两个或两个以上的变量确定一个相应的数学表达式,并从一个已知变量来推测另一个变量 联系: 相关分析需要回归分析来表明现象数量关系的具体形式 回归分析必须以相关分析为基础

二、相关关系的类型 1、相关关系的方向分 正相关 负相关 y y x x

2、按照相关关系的密切程度 完全相关 高度相关 中度相关 低度相关 质量特征 质量特征 因素 因素

3、按照相关关系的表现形式 线性相关 非线性相关 质量特征 质量特征 因素 因素

三、相关分析的方法 1、绘制相关图 将收集到的大量数据资料以散点的形式在坐标平面上反映出来,形成散点图 例1:某公司为了研究广告费支出对销售额的影响,统计了上半年各月的资料,数据如表 例2:某企业收集的商品销售额与商品流通费用率的有关资料,见表

2、相关系数

r r r 0.6< <1,高度相关 r r =1时,完全相关 0.3< <0.6,中度相关 0.6< <1,高度相关 0.3< <0.6,中度相关 <0.3,低度相关 =0,不相关 r r r r r

6×1370-24.8×307 6×105.54-24.82 6×16187-3072 0.9988

第二节 一元线性回归预测法 一、一元线性回归预测法 1、一元线性回归 第二节 一元线性回归预测法 一、一元线性回归预测法 1、一元线性回归 如果因变量(y)与某一个主要影响因素(自变量)之间存在着较为密切的线性相关关系,则可用一元线性回归模型来描述它们之间的数量关系。 Y=a+bX

二、预测步骤 1、回归预测的一般步骤 确定预测目标 寻找影响因素 收集整理历史和现实资料 进行相关分析 建立回归模型 求解模型参数 对回归预测模型进行检验 利用回归模型进行预测

2、一元线性回归预测法的步骤 进行相关分析 建立回归预测模型 Y=a+bX

3、对回归预测模型进行检验 Sy——表示回归标准差 Y——因变量实际值 Y——根据回归方程推算出来的因变量的估计值 n—m 回归估计自由度 m——模型参数的个数

2)回归标准差系数 S/Y 判断准则:回归标准差系数小于15%,模型拟和程度良好。 3)拟和优度检验

4)利用回归模型进行预测 点预测 区间预测 [Y-tS,Y+ tS] t为概率度,大小取决于可靠程度F(t)的大小 可以通过查正态分布概率表获得,常用值 F(t)=68.27%时,t=1 F(t)=95%时,t=1.96 F(t)=95.45%时,t=2 F(t)=99.73%时,t=3 F(t)=99.99%时,t=4

例4:某企业下半年产品产量与单位成本的相关资料见下表

解:1、绘制相关图,判断相关关系

2、建立回归模型 Y=a+bX

Y=a+bX=77.37-1.82X

3、对回归预测模型进行检验 Sy= 3.818/(6-2) =0.98(元)

4、利用回归模型进行预测 当产量为6万件时,X=6 Y=77.37-1.82×6=66.45(元/件) 若以99.99%的可靠程度,则t=4,所以预测值的置信区间为(62.53,70.37)

书上p253,20题 年份 (百万元) (亿元) 2000 8.5 27 2001 10.6 31 2002 13 34.5 2003 15 38 2004 17.5 42 2005 19.7 45.5 2006 22 49.6 2007 24.6 54.2 ∑ 130.9 321.8

解:1)绘制散点图 经观察,销售额与产值高度正相关,呈线性相关,可以线性回归模型进行预测。

2)建立模型

3)列表计算参数 由表中数据可计算出参数 a=0.5998 b=-7.7646 所以回归模型为

4)检验模型 年份 销售额 预测值 误差 误差平方 (亿元) (百万元) 2000 27 8.5 229.5 729 8.4 0.1 0.01 2001 31 10.6 328.6 961 10.8 -0.2 0.04 2002 34.5 13 448.5 1190.25 12.9 2003 38 15 570 1444 15.0 0.0 0.00 2004 42 17.5 735 1764 17.4 2005 45.5 19.7 896.35 2070.25 19.5 0.2 2006 49.6 22 1091.2 2460.16 22.0 2007 54.2 24.6 1333.32 2937.64 24.7 -0.1 ∑ 321.8 130.9 5632.47 13556.3 产值 4)检验模型

5)预测 当x=60.7亿元时

年份 销售额y (万元) 产值x (亿元)  xy  x2 2000 850 27 22950 729 2001 1060 31 32860 961 2002 1300 34.5 44850 1190.25 2003 1500 38 57000 1444 2004 1750 42 73500 1764 2005 1970 45.5 89635 2070.25 2006 2200 49.6 109120 2460.16 2007 2460 54.2 133332 2937.64 ∑ 13090 321.8 563247 13556.3

某地区通过市场调查,收集到相关资料见下表: 若2005年平均每户年收入提高10%,试建立一元线形回归预测模型,预测2005年平均每户年消费支出可达到多少?若以95.45%的把握程度,计算置信区间。

解:1)相关分析 利用数据资料绘制相关图

(方法一) 通过观察相关图,判定该地区每户居民的消费支出与收入成一元线形相关,可以用一元线形回归模型进行预测。 (方法二) 计算相关系数

5×23.793-12.5×9.34 5×31.83-12.52 5×17.7866-9.342 0.99835 0.6<r<1所以该地区居民消费支出与收入 高度正相关

2)建立回归预测模型 设一元线性回归预测模型为 Y=a+bX 求解模型参数a、b

23.793-12.5×9.34÷5 31.83-12.5×12.5÷5 a=9.34÷5-0.76×12.5÷5=-0.032 所以,一元线性回归方程为 Y=-0.032+0.76X 3)对回归预测模型进行检验 Sy=0.019 Sy值很小,说明模型拟和程度很好 b= =0.76

4)利用模型进行预测 当收入提高10%时,X=3.30代入方程 Y=-0.032+0.76X=2.476(万元) 若以95.45%的可靠程度,则t=2,Y=2.476, Sy =0.019,代入预测值的置信区间计算公式(Y-t Sy ,Y+t Sy ) 计算可得预测值的置信区间为 (2.438,2.514)

第三节 多元线性回归预测法 一、多元线性回归预测法 第三节 多元线性回归预测法 一、多元线性回归预测法 某一事物的发展变化受到多因素的影响,而每个影响因素与预测对象之间大体呈线性相关关系时,要选取多个自变量来建立回归方程。 二、二元线性回归预测法

例题 某企业通过调查研究发现,企业的销售额与广告支出及销售人员的数量有着密切的线性相关关系,有关资料如下 年份 2001 2002 2003 2004 2005 2006 2007 2008 广告费(万元) 170 180 160 190 销售员(人) 290 320 250 340 330 310 300 销售额(千万元) 26 30 24 32 31 27

若2009年广告费支出200万元,推销人员达到350人,试预测销售额可达到多少? 解:1)建立预测模型。设二元线性回归预测模型为: Y=a+b1X1+ b2X2 其中,X1为广告费支出,X2为销售人员数量 2)求解参数,见表

将表中的数据代入公式

得到 a=-0.011988 b1=0.00099 b2=0.0925 则预测模型为 Y= -0.011988 + 0.00099 X1+ 0.0925 X2

3)进行模型检验。计算出有关数据

Sy= 4.88037/(8-3) =0.988(元) 所以 回归标准差系数( Sy /Y)=0.998/28.375=3.48% 说明模型的拟和程度好。 4)进行预测 Y= -0.011988 + 0.00099 X1+ 0.0925 X2 = -0.011988 + 0.00099 ×200+ 0.0925 ×350 =32.45(千万元)

第四节 非线性回归预测法 一、非线性回归预测法的步骤 第四节 非线性回归预测法 一、非线性回归预测法的步骤 把建立的非线性回归模型转化为线性回归模型,用线性回归模型的求解方法进行求解参数,然后,再将求得的参数还原。 1、多项式回归模型

2、对数曲线回归模型

3、指数曲线回归模型

4、幂函数曲线回归模型

例题 某企业收集了某产品的价格与销量的相关资料 试预测,若价格下降到3元时,销量可以达到多少?

解:1)根据资料,绘制相关图,由图形可知价格与销量间大体呈指数曲线变化 2)建立回归预测模型为 Y=abX 两边取对数得 lnY=lna+Xlnb

3)求解模型参数,列出相关计算 最小二乘法求得