树的基本概念 离散数学─树 南京大学计算机科学与技术系.

Slides:



Advertisements
Similar presentations
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
Advertisements

二叉树在树结构的应用中起着非常重要的作用,因为对二叉树的许多操作算法简单,而任何树都可以与二叉树 相互转换,这样就解决了树的
总结-图 基础知识 基本方法 2017年3月6日 西南石油大学..
第三章 函数逼近 — 最佳平方逼近.
水土保持工程施工階段監造管理之探討 授課老師:林俐玲 教授 指導老師:陳文福 教授 報告人: 顏廣智 學 號:
常用逻辑用语复习课 李娟.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
公 园 大 道 ——公园链住宅社区 组员:张亚辉 程桂华 黄传东.
1.4 民用建筑的构造组成 1、基础 2、墙体和柱 3、屋顶 4、楼地层 5、楼梯 6、门窗 次要组成部分(阳台、雨蓬、台阶、散水等)
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
2-7、函数的微分 教学要求 教学要点.
余角、补角.
直线和圆的位置关系.
树 无向树及其应用 生成树 根树及其应用.
Copyright © 《离散数学》精品课程小组
大学本科生课程 离 散 数 学 第16章 树 软件与理论教研室.
第六章 地基和地下室 第一节 概述 第二节 基础的构造 第三节 地下室构造.
依氣候條件所區分的成土作用 作用 說明 鐵鋁化
非线性反馈移位寄存器探讨 戚文峰.
同学们好! 肖溪镇竹山小学校 张齐敏.
树的应用 离散数学─树 南京大学计算机科学与技术系.
第七章 图 (Graph)
Ch.7 图 图是一种复杂的非线性结构 应用:AI、工程、数学、生物、计算机 结点间的逻辑关系:任两个结点都可能相关
图(一).
强连通分量 无向图 1、任意两顶点连通称该图为连通图 2、否则将其中的极大连通子图称为连通分量 A D C B E 有向图
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第11讲 树和二叉树(二).
類別 特性 計量 (1)測量時可讀出工件之正確尺寸 (2)多用於小量生產的產品,量測與檢驗尺寸是否合乎標準。
平行四边形的性质 灵寿县第二初级中学 栗 彦.
无向树和根树.
第 五 章 图 论 (第二部分) 1. 通路 2. 图的连通性.
线段的有关计算.
离散数学─图论初步 南京大学计算机科学与技术系
第18讲 无向树与有向树 重点内容: 1.无向树. 2.有向树..
离散数学─归纳与递归 南京大学计算机科学与技术系
2012慈濟大學18週年校慶運動會 裁判研習 體育教學中心 張木山 教授.
定理 6.10(五色定理):任何平面图G是5-可着色的。
機率論 研究自然律的重要工具之一 解決日常生活中的簡單問題。  . 機率論 研究自然律的重要工具之一 解決日常生活中的簡單問題。  
复习.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
第十六章 树 主要内容 无向树及其性质 生成树 根树及其应用.
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
树和二叉树(一).
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
第5节 树 前两章学习的栈和队列属于线性结构。在这种结构中,数据元素的逻辑位置之间呈线性关系,每一个数据元素通常只有一个前件(除第一个元素外)和一个后件(除最后一个元素外)。在实际生活中,可以用线性结构描述数据元素之间逻辑关系的问题是很广泛的,但也有很多问题不能依靠线性结构来解决,例如家谱、行政组织机构等都是非线性的数据结构。其中树就是一种非线性的数据结构。
13.3 等腰三角形 (第3课时).
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
树和图 tree and graph 蔡亚星.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§2 方阵的特征值与特征向量.
主讲教师 欧阳丹彤 吉林大学计算机科学与技术学院
第七章 树 7.1树及其性质 定义 7.1:一个连通无回路的图称为树,记为T。树中度数为1的顶点称为树叶(或称悬挂点)。度数大于1的顶点称为分枝点或内点。不相交的树的全体称为森林。平凡图也可称为平凡树。(平凡图即只有一个点)
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
欧拉图与汉密尔顿图.
树的基本概念.
第三部分 图论 本部分主要内容 图的基本概念 树 欧拉图与哈密顿图 二部图与匹配 平面图 着色.
动量守恒定律的应用 石油中学 高星.
离散数学─图论 南京大学计算机科学与技术系
2019年9月11日星期三 离散  数学 计算机学院 冯伟森 2019年9月11日星期三.
本节内容 1. 平衡二叉树的定义 2.平衡化旋转 3.平衡二叉排序树的插入操作 昆山爱达人信息技术有限公司
离散数学─归纳与递归 南京大学计算机科学与技术系
最小生成树 最优二叉树.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
第十二章 树 主要内容 无向树及其性质 生成树 根树及其应用.
二、平面图的特征 找出一个图是平面图的充分必要条件的研究曾经持续了几十年, 直到 1930 年库拉托斯基 (Kuratowski) 给出了平面图的一个非常简洁的特征。
Presentation transcript:

树的基本概念 离散数学─树 南京大学计算机科学与技术系

内容提要 树的定义 树的性质 根树 有序根树的遍历

树的定义 定义:不包含简单回路的连通无向图称为树。 森林(连通分支为树) 树叶/分支点(度为1?) 互不同构的6个顶点的树

树中的通路  设T是树,则u,vVT, T中存在唯一的 uv-简单通路。 假设T中有两条不同的uv-简单通路P1,P2。不失一般性,存在e=(x,y)满足:eP1但eP2,且在路径P1上x比y靠近u。令T*=T-{e},则T*中包含P2, 于是(P1中的xu-段)+P2+( P1中的vy-段)是T*中的xy-通路,T*中含xy-简单通路(记为P’),则P’+e是T中的简单回路,与树的定义矛盾。 u x y v  P2 P1

有关树的几个等价命题 设T是简单无向图,下列四个命题等价: (1) T是不包含简单回路的连通图。//树的定义 备注: 树是边最少的连通图 树是边最多的无简单回路的图

树中边和点的数量关系 设T是树,令n=|VT|, m=|ET|, 则m=n-1。 证明. 对n进行归纳证明。当n=1, T是平凡树,结论显然成立。 假设当nk是结论成立。 若n=k+1。因为T中每条边都是割边,任取eET, T-{e}含两个连通分支,设其为T1, T2, 并设它们边数分别是m1, m2, 顶点数分别是n1, n2, 根据归纳假设:m1=n1-1, m2=n2-1。注意:n1+n2=n, m1+m2=m-1。 m= m1+m2+1=n-1。

连通图边数的下限 顶点数为n( n2)的连通图,其边数mn-1。 (对于树,m=n-1, “树是边最少的连通图”) 设G是边数为m的连通图,且|VG|=n>2。任取vVG,令G’=G-v,设G’有(1)个连通分支G1,G2,…,G,且Gi的边数和顶点数分别是mi和ni。 我们有n=n1+n2+…+n+1, mm1+m2+…+m+ (每个连通分支中至少有一个顶点在G中与删除的v相邻)。 由归纳假设,mini-1(i=1,2,…)。 所以:m m1+m2+…+m+n1+n2+…+n-+=n-1。

与边点数量关系有关的等价命题 设T是简单无向图,下列三个命题等价: (1) T是树。 (2) T不含简单回路,且m=n-1。 (1)(2), 已证。 (2)(3), 若不连通,分支数2,各分支为树(无简单回路、连通),则m=n-<n-1,矛盾。 (3)(1), 设e是T中任意一条边,令T’=T-e, 且其边数和顶点数分别是m’和n, 则m’=m-1=n-2<n-1, T’是非连通图。因此,G的任意边均是割边,G中无简单回路。

根树的定义 定义:底图为树的有向图称为有向树。 定义:若有向树恰含一个入度为0的顶点,其它顶点入度均为1,则该有向树称为根树,那个入度为0的顶点称为根。

根树中的有向通路 若v0是根树T的根,则对T中任意其它顶点vn ,存在唯一的有向v0vn-通路,但不存在vnv0-通路。 v0 v0 v0 p vn vi vk 假设从 vn 到 v0 也有通路 vn 入度>1 vn w1 (a) (b) (c)

根树的图形表示 边上的方向用约定的位置关系表示 第0层 根 内点(有子女) 树叶(无子女) 第1层 树高=3(最大的通路长度) 第2层 根也是内点,除非它是图中唯一顶点。 第0层 根 内点(有子女) 树叶(无子女) 第1层 树高=3(最大的通路长度) 第2层 第3层

根树与家族关系 用根树容易描述家族关系,反之,家族关系术语被用于描述根树中顶点之间的关系。 John's ancestors John's parent John’s siblings John John's child John's descendants

根树的几个术语 m元树:每个内点至多有m个子女 完全m元树(full m-ary tree) 平衡:树叶都在h层或(h-1)层, h为树高。 2元树也称为二叉树 完全m元树(full m-ary tree) 每个内点恰好有m个子女 平衡:树叶都在h层或(h-1)层, h为树高。 有序:同层中每个顶点排定次序 有序二叉树通常也简称为二叉树

根树的几个术语(续) 定义:设T是根树,T中任一顶点v及其所有后代的导出子图显然也是根树(以v为根),称为T的根子树。 有序二叉树的子树分为左子树和右子树 即使不是完全二叉数,也可以 分左、右,必须注意顶点位置 左子树 右子树

根树(举例) 树的高度、各顶点所处的层数 完全、平衡

完全m元树的顶点数 n-1 = mi (入度总数=出度总数) n = i + l (顶点分为内点和树叶) 设T是完全m元树, 若T有n个顶点, 则有i=(n-1)/m个内点和l=[(m-1)n+1]/m个树叶. 若T有i个内点,则有n=mi+1顶点和l=(m-1)i+1个树叶. 若T有l个树叶,则有n=(ml-1)/(m-1) 个顶点和i=(l-1) )/(m-1) 个内点. n-1 = mi (入度总数=出度总数) n = i + l (顶点分为内点和树叶)

高度为h的m元树的顶点数 mh-1 l  mh 高度为h的m元树最多有个mh个树叶。 若高度为h的m元树有l个树叶,则h logml. 如果这棵树是完全的且平衡的,则有h= logml. mh-1 l  mh

有序根树的遍历 前序遍历 (preorder) T只包含根r,则为 r; T的子树为T1, …, Tn, 则为 r, preorder(T1), …, preorder(Tn) r T1 … Tn

有序根树的遍历 前序遍历 (preorder) k i d c g j f e b a h

有序根树的遍历 后序遍历 (postorder) k i d c g j f e b a h

有序根树的遍历 中序遍历 (inorder)//先访问第一棵子树 k i d c g j f e b a h

作业 教材[10.1, 10.3] p.539: 4, 21, 26, 38, 43 p.564: 9, 25, 29