Metabolism of Carbohydrates
Classes of carbohydrate Concept of carbohydrate 碳水化合物,其化学本质为多羟醛或多羟酮类及其衍生物或多聚物。 Classes of carbohydrate monosacchride oligosacchride polysacchride glycoconjugate
Monosacchride glucose ——已醛糖 fructose ——已酮糖
galactose ——已醛糖 ribose ——戊醛糖
Oligosacchride 能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。 maltose: glucose—glucose sucrose: glucose—fructose lactose: glucose—galactose
Polysacchride 能水解生成多个分子单糖的糖。 starch glycogen cellulose
Starch: one of the chief forms in which plants store food 淀粉颗粒
Non-reduced glycogen : the forms of glucose stored in the animals
cellulose:食物中含有,人体因无-糖苷酶而不能利用。有刺激肠蠕动等作用。 β-1,4-糖苷键
Section I Introduction
Physiological functions 1. Provide the energy--major function 2. carbo-sources of other materials in the body: amino acids, fats, cholesterol 3. Components of cells:glycoprotein、proteoglycan 、glycolipid, etc., nucleotides
Di- and poly-saccharides Digestion and Absorption of carbohydrates Digestion of Carbohydrates Monosaccharides Do not need hydrolysis before absorption Very little (if any) in most feeds Di- and poly-saccharides Relatively large molecules Must be hydrolyzed prior to absorption Hydrolyzed to monosaccharides Only monosaccharides can be absorbed
Process of digestion starch Mouth stomach (30%) (5%) (40%) (25%) Salivary Amylase stomach Small Intestine Pancreatic Amylase Maltose +麦芽三糖 (40%) (25%) Dextrin +异麦芽糖 (30%) (5%) 肠粘膜上皮细胞刷状缘 α-葡萄糖苷酶 α-临界糊精酶 glucose
Overview Monogastric Carbohydrate Digestion Location Enzymes Form of Dietary CHO Mouth Salivary Amylase Starch Maltose Sucrose Lactose Stomach (amylase from saliva) Dextrin→Maltose Small Intestine Pancreatic Amylase Maltose Brush Border Enzymes Glucose Fructose Galactose + + + Glucose Glucose Glucose Large Intestine None Bacterial Microflora Ferment Cellulose
Carbohydrate Absorption location: duodenum and jejunum formation: monosacchride mechanism:active transport Na+-dependent glucose transporter, SGLT
细胞内膜 肠腔 G Intestinal epithelial cell K+ Na+ Portal Vein ATP Na+pump Brush Border 细胞内膜 Intestinal epithelial cell Portal Vein 肠腔 K+ ATP Na+pump ADP+Pi Na+ G
Carbohydrates Monosaccharides Small Intestine GLUT (glucose transporter)GLUT 1~5) Carbohydrates Monosaccharides Portal Vein Active Transport Liver Distributed to tissue through circulation
Glucose glycogen ATP H2O及CO2 NADPH+H+ starch Outline of carbohydrate metabolism glycogen 肝糖原分解 糖原合成 ATP H2O及CO2 ribose + NADPH+H+ Aerobic 磷酸戊糖途径 酵解途径 pyruvate Glucose anaerobic lactate Digestion and absorption 糖异生途径 starch lactate、amino acid、glycerol
catabolic pathway of carbohydrates Aerobic oxidation anaerobic glycolysis pentose pathway
Section II Glycolysis
The process of glycolysis *Definition: Glycolysis is the sequence of reactions that converts glucose into lactate with the concomitant production of ATP,under anaerobic conditions *the reaction site: cytosol *two stages of glycolysis Stage I :glucose digested to pyruvate—— Glycolysis pathway stageII:The conversion of pyruvate to lactate
(一)The conversion of one molecule of glucose two molecules of pyruvate G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate (一)The conversion of one molecule of glucose two molecules of pyruvate ⑴ The conversion of glucose to Glucose-6-phosphate ATP ADP Mg2+ hexokinase Glucose-6-phosphate G-6-P ATP needed Unreverse reaction
Four types of hexokinase in the mammals (typeⅠto Ⅳ) Type Ⅳ located in the liver cells: ①appetency to glucose is very low ②regulated by hormones
(F-6-P) glucose-6-phosphate (G-6-P) ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑵ The conversion of glucose-6-phosphate to fructose-6-phosphate fructose-6-phosphate (F-6-P) glucose-6-phosphate (G-6-P) Phosphoglucose isomerase
Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑶ The conversion of F-6-P to fructose-1,6-diphosphate fructose-1,6- Diphosphate (F-1,6-2-P) (F-6-P) ATP ADP Mg2+ phosphofructokinase (FPK) ATP needed unreverse
fructose-1,6-diphosphate Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑷ The conversion of F-1,6-2P converted to 2 molecules of triose phosphate fructose-1,6-diphosphate (F-1,6-2P) Dihydroxyacetone phosphate aldolase Glyceraldehyde 3-phosphate
dihydroxyacetone phosphate Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑸ The isomerization of triose phosphate Triose phosphate isomerase dihydroxyacetone phosphate glyceraldehyde 3-phosphate
One molecule of glucose is converted to two molecules of glyceraldehyde 3-phosphate ,which consumes two ATP The following steps can be regarded as the reaction of two glyceraldehyde 3-phosphate
⑹ oxygenation of glyceraldehyde 3-phosphate to 1,3-diphospho-glycerate Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑹ oxygenation of glyceraldehyde 3-phosphate to 1,3-diphospho-glycerate PO32- Pi、NAD+ NADH+H+ Glyceraldehyde3 phosphate dehydrogenase 1,3-diphospho-glycerate (1,3-BPG) Glyceraldehyde 3-phosphate The only dehydrogenation reaction in Glycolysis 1,3-BPG is high-energy compound
ADP ATP ⑺ The conversion of diphosphoglycerate to 3-phosphoglycerate Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑺ The conversion of diphosphoglycerate to 3-phosphoglycerate OPO32- ADP ATP Phosphoglycerate kinase diphosphoglycerate (1,3-BPG) 3-phosphoglycerate 1st substrate-level phosphorylation
⑻ The conversion of 3-phospho-glycerate to 2-phosphoglycerate Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑻ The conversion of 3-phospho-glycerate to 2-phosphoglycerate Phosphoglycerate mutase 3-phospho-glycerate 2-phosphoglycerate
PEP is a high energy compound Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑼ The conversion of 2-phosphoglycerate to phosphoenolpyruvate H2O enolase (Mg2+/Mn2+ ) phosphoenolpyruvate 2-phosphoglycerate PEP is a high energy compound
2nd substrate-level phosphorylation Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-diphospho-glycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxy acetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ Phosphoenolpyruvate ⑽ The conversion of Phosphoenolpyruvate to pyruvate Phosphoenolpyruvate enolpyruvate ADP ATP K+ Mg2+ Pyruvate kinase pyruvate 2nd substrate-level phosphorylation
NADH+H+ may come from dehydrogenation of Glyceraldehyde 3-phosphate (二) The conversion of two molecules of pyruvate to two molecules of lactate Lactate dehydrogenase (LDH) NADH + H+ NAD+ pyruvate lactate NADH+H+ may come from dehydrogenation of Glyceraldehyde 3-phosphate
Glu G-6-P F-6-P F-1, 6-2P E1 E2 ATP ADP E1: hexokinase NAD+ NADH+H+ 1,3-diphosphoglycerate 3-phospho-glycerate 2-phosphoglycerate pyruvate Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate NAD+ NADH+H+ phosphoenolpyruvate E1: hexokinase E2: phosphofructokinase E3: Pyruvate kinase NADH+H+ NAD+ lactate E3
G G-6-P F-6-P F-1,6-2P PEP pyruvate Summary of glycolysis ⑴ reaction site:cytosol ⑵ Glycolysis is an anaerobic process ⑶ including three unreverse reactions G G-6-P ATP ADP hexokinase ATP ADP F-6-P F-1,6-2P phosphofructokinase ADP ATP PEP pyruvate Pyruvate kinase
⑷ The form and numbers of energy production form:substrate-level phosphorylation Pure numbers of ATP: One molecule of glucose 2×2-2= 2ATP One glucose unit from glycogen 2×2-1= 3ATP ⑸ fates of lactate Used by degradation Lactate cycle(gluconeogenesis )
Other hexoses can enter into glycolysis galactose Galactose-1-P Glucose-1-P kinase isomerase Glu G-6-P F-6-P F-1,6-2P ATP ADP pyruvate Mannose Mannose -6-P hexokinase isomerase fructose hexokinase
二、regulation of glycolysis ① hexokinase ② phosphofructokinase ③ Pyruvate kinase Key enzymes ①allosteric regulation ②covalent modification Forms
* allosteric regulation (一) 6- phosphofructokinase -1(PFK-1) * allosteric regulation allosteric activator : F-2,6-2P; AMP; ADP; F-1,6-2P; allosteric inhibitor:citric acid ; ATP F-1,6-2P activated by positive feed back AMP、ATP compete the allosteric site outside of the activation center
AMP ATP cAMP F-6-P F-2,6-2P ATP + PFK-1 ADP + AMP F-1,6-2P + – Pi ATP citric acid – Glucagon PFK-2 (with activation) FBP-2 (without activation) 6-PFK-2 ATP cAMP Pi ATP ADP activation F-6-P F-2,6-2P + PKA PP2B PFK-2 ( without activation ) FBP-2 ( with activation ) P Fructose Bisphosphatase -2 Pi ATP –/+ + PFK-1 ADP + citric acid – AMP + F-1,6-2P
(二) Pyruvate kinase 1. allosteric regulation allosteric activator : fructose-1,6-diphosphate allosteric inhibitor:ATP, Alanine
Pi P (with activation) ATP ADP PKA, CaM kinase PKA:protein kinase A 2. Regulation of covalent modification phosphoprotein phosphatase Pi P Pyruvate kinase Pyruvate kinase (with activation) (without activaiton) ATP ADP Glucagon PKA, CaM kinase PKA:protein kinase A CaM:Calmodulin
(三) hexokinase or glucose kinase * Glucose-6-phosphate has feedback inhibition on hexokiase ,but has no effect on glucose kinase in liver * Long-chain acyl-CoA esters has allosteric inhibition on glucose kinase in liver
三、 Physiologic role of glycolysis The effective way of energy production under anaerobic conditions 2. The important energy production pathway under anaerobic conditions in some cells ① Cells without mitochondria:red blood cells ② cells with active metabolism :white blood cells , bone marrow cells
Section III Aerobic Oxidation of Carbohydrate
concept: Reaction site : cytosol and mitochondria when oxygen is enough,glucose oxidation is processing completely to produce H2O and CO2,and to release energy. Reaction site : cytosol and mitochondria
G(Gn) cytosol pyruvate NADH+H+ FADH2 [O] CO2 H2O ATP ADP The Process of Aerobic Oxidation of Carbohydrates G(Gn) cytosol Stage 1 :glycolysis pathway Stage 2: oxidative decarxylation of pyruvate pyruvate Stage 3:TAC cycle acetyl CoA Stage 4:oxidative phosphorylation mitochondria TAC cycle NADH+H+ FADH2 [O] CO2 H2O ATP ADP
NAD+ , HSCoA CO2 , NADH + H+ (一)oxidative decarboxylation of pyruvate acetyl CoA NAD+ , HSCoA CO2 , NADH + H+ Pyruvate Dehydrogenase complex
E1: Pyruvate Dehydrogenase E2:Dehydrolipoyl Transacetylase HSCoA NAD+ Components of Pyruvate Dehydrogenase complex enzyme E1: Pyruvate Dehydrogenase E2:Dehydrolipoyl Transacetylase E3:Dehydrolipoyl Dehydrogenase co-enzyme TPP Lipoic acid( ) HSCoA FAD, NAD+ S L
1. -羟乙基-TPP的生成 CO2 2.乙酰硫辛酰胺的生成 NADH+H+ 5. NADH+H+的生成 NAD+ CoASH 3.乙酰CoA的生成 4. 硫辛酰胺的生成
(二) Tricarboxylic acid Cycle, TAC *introduction TAC、citric acid cycle、Krebs cycle Reaction site mitochondria
③ Isocitrate dehydrogenase ④α-ketoglutaratedehydrogenase complex H2O H2O ② ① H2O CoASH NADH+H+ ② NAD+ ① Citrate synthase ⑧ ②aconitase ③ Isocitrate dehydrogenase ④α-ketoglutaratedehydrogenase complex ⑤succinyl-CoA synthetase NAD+ GTP GDP ATP ADP AMP kinase ⑥ Succinate dehydrogenase NADH+H+ ⑦ ⑦fumurase H2O ③ ⑧Malate dehydrogenase FADH2 CO2 NAD+ ⑥ FAD GDP+Pi ④ GTP NADH+H+ ⑤ CO2 CoASH CoASH
O=C-COOH CH3 CH2COOH CH2 + C=O HO-C-COO- COOH SCoA CH2COOH ⑴ Synthesis of citrate :un-reverse reaction O=C-COOH CH3 CH2COOH CH2 + C=O HO-C-COO- COOH SCoA CH2COOH Oxaloacetate acetyl CoA citrate Citrate synthase H2O CoA-SH Un-reverse reaction
⑵ synthesis of isocitrate COO- COO- COO- CH2 CH H-C-OH - OOC-C-OH - OOC-C - OOC-C-H CH2 CH2 CH2 COO- COO- COO- Citrate cis-Aconitate isocitrate H2O H2O
isocitrate α-ketoglutarate ⑶ 1st oxidative decarboxylation to formα-ketoglutarate: COO- COO- H-C-OH C=O -OOC-C-H CH2 CH2 CH2 COO- COO- isocitrate α-ketoglutarate Isocitrate dehydrogenase Mg2+ NADH+H+ CO2 NAD+ Un-reverse reaction
COO- O=C~SCoA C=O CH2 CH2 CH2 CH2 COO- COO- NAD+ NADH+H+ CoA-SH ⑷ 1st oxidative decarboxylation to form succinyl-CoA: COO- O=C~SCoA C=O CH2 CH2 CH2 CH2 COO- COO- α-ketoglutarate succinyl-CoA high energy compound α-ketoglutarate dehydrogenase complex NAD+ NADH+H+ CoA-SH CO2 Un-reverse reaction
O=C~SCoA COO- CH2 CH2 COO- COO- +CoA GDP+Pi GTP ⑸substrate-level phosphorylation:catalysed by succinyl-CoA synthetase O=C~SCoA COO- CH2 CH2 COO- COO- succinyl-CoA succinate The only substrate-level phosphorylation in TAC to produce GTP succinyl-CoA synthetase +CoA GDP+Pi GTP
CH2-COO- HC-COO- CH2-COO- -OOC-C-H Succinate fumarate FAD FADH2 ⑹ dehydrogenation of succinate to form fumarate: CH2-COO- HC-COO- CH2-COO- -OOC-C-H Succinate fumarate Succinate dehydrogenase FAD FADH2
⑺ Formation of malate: HC-COO- HO-CH-COO- -OOC-C-H CH2-COO- fumarate malate fumurase H2O
⑻ Formation of Oxaloacetate: HO-CH-COO- O=C-COOH CH2-COO- CH2-COO- Malate Oxaloacetate Malate dehydrogenase NAD+ NADH+H+
Summary of TAC ① Concept of TAC:Acetyl-CoA+Oxaloacetate citrate→ repeat dehydrogenation and decarboxylation →Oxaloacetate. Acetyl-CoA is oxidated. ②the reaction is located in mitochondria
③ Points of TAC cycle Four times of dehydrogenation ,three un-reverse reaction, two times of decarboxylation ,one time of substrate-level phosphorylation After TAC cycle, one molecular of acetyl-CoA forms:1 FADH2,3 NADH+H+,2 CO2, 1 GTP. Total: 12ATP 。 Key enzymes: Citrate synthase α-ketoglutaratedehydrogenase complex Isocitrate dehydrogenase
④ the reaction cycle can not be reversed ⑤ TCA Cycle Intermediates act as catalyzer without change of amount Oxaloacetate and other TAC cycle Intermediates can not be synthesized directly from acetyl-CoA Intermediates can not be directly oxidated in TAC cycle to form CO2 and H2O
aspartate Fatty acid citrate ⑥ Role of TCA Cycle Intermediates : Some of the Cycle Intermediates can be converted to other materials, for example: Oxaloacetate aspartate α-ketoglutarate Glutamine citrate Fatty acid Succinyl CoA porphyrin
malate 苹果酸酶 CO2 NAD+ NADH + H+ CO2 When sugar supply is not enough,malate、oxaloacetate→pyruvate→acetyl-CoA → TAC,the absence of oxaloacetate can course TAC obstacle malate 苹果酸酶 Pyruvate CO2 NAD+ NADH + H+ oxaloacetate oxaloacetate decarboxyase Pyruvate CO2
* Recruit of oxaloacetate : citrate Citrate lyase Acetyl-CoA malate Malate dehydrogenase NADH+H+ NAD+ oxaloacetate aspartate glutamine-oxaloacetic transaminase α-ketoglutarate glutamine pyruvate Pyruvate carboxylase CO2
2. Physiological significance of TAC cycle The common pathway of oxidative degradation of three major nutrients The hinge linked the metabolism of three major nutrients Providing small precursor molecules for metabolsim of other substances Procviding H+ + e for respiratory chain
二、 Aerobic Oxidation to create ATP H+ + e enter into respiratory chain where they can be oxidation completely to produce H2O, coupled with oxidative phosphorylation to form ATP from ADP NADH+H+ H2O、3ATP [O] H2O、2ATP FADH2 [O]
1mol glucose Stage I: 2(3)×2+4-2=6(8) Stage II: 3 ×2=6 Stage III: 12×2=24 Tptal =36(38) mol
The physiological significance of Aerobic Oxidation The most major pathway to provide energy in most tissues of the human beings
① glycolysis: hexokinase Pyruvate kinase 三、regulation of Aerobic Oxidation ① glycolysis: hexokinase Pyruvate kinase 6- phosphofructokinase -1 ② oxidative decarboxylation of pyruvate : Pyruvate Dehydrogenase complex Key enzymes ③ TAC cycle:citrate synthase α-ketoglutarate dehydrogenase complex Isocitrate dehydrogenase
⑴ allosteric regulation 1. Pyruvate Dehydrogenase complex ⑴ allosteric regulation allosteric inhibitor :Acetyl-CoA; NADH; ATP allosteric activator :AMP; ADP; NAD+ * Acetyl-CoA/HSCoA or NADH/NAD+,inhibit
covalent modification ⑵ Regulation of covalent modification pyruvate 目 录
2. Regulation of TAC cycle Acetyl-CoA citrate oxaloacetate Succinyl CoA α-ketoglutarate isocitrate malate NADH FADH2 GTP ATP ATP – citrate Succinyl-CoA NADH + ADP ① ATP、ADP Citrate synthase ② inhibition by production accumulation Isocitrate dehydrogenase – ATP ③ allosteric feedback inhibition by Intermediates ADP + Ca2+ α-ketoglutarate dehydrogenase complex + Ca2+ ④ others, esp:Ca2+ can activate many enzymes – Succinyl-CoA NADH
Characteristics of regulation of Aerobic Oxidation ⑴ Regulation by key enzymes ⑵ Regulation by ATP/ADP or ATP/AMP ratio through the whole process ⑶ TAC cycle affected by the speed of oxidative phosphorylation ⑷ harmony regulation between TAC cycle and glycolysis pathway . glycolysis pathway which provides pyruvate to form acetyl-CoA is dependent on the need of TAC cycle.
Regulation by ATP/ADP or ATP/AMP ration, the influence by ATP/AMP is more notable Adenylate Kinase The concentration of ATP in the body is 50-fold more than AMP. After the above reaction,the change of ATP/AMP is larger than that of ATP, which leads to signal amplification
四、Pastuer effect: * concept:the phenomenon of glycolysis inhibition by Aerobic Oxidation * mechanism In the presence of oxygen,NADH+H+e enter into the mitochondria to be oxidation and the conversion of pyruvate to lactate is suppressed. In the Absence of oxygen,glycolysis pathway is enhanced,the concentration of NADH+H+ in cytosol increases and pyruvate is converted to lactate as hydrogen acceptor
Section VI Pentose Phosphate Pathway
* concept: 磷酸戊糖途径是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。
* The reaction includes two stages 一、the process of Pentose Phosphate pathway * Site :cytosol * The reaction includes two stages Stage I:oxidative reaction To form Pentose Phosphate , NADPH+H+ and CO2 Stage II:group transfer reaction
1. The formation of Pentose Phosphate 6-磷酸葡萄糖酸 H CO Glucose-6-phosphate 6-磷酸葡萄糖酸内酯 6-磷酸葡萄糖脱氢酶 NADPH+H+ NADP+ ⑴ H2O 5-磷酸核酮糖 CH2OH C O 5-磷酸核糖 6-磷酸葡萄糖酸脱氢酶 NADP+ CO2 NADPH+H+ ⑵
6-磷酸葡萄糖脱氢酶是关键酶。 两次脱氢生成NADPH + H+。 磷酸核糖是非常重要的中间产物。 G-6-P 5-磷酸核糖 CO2
2. 基团转移反应 磷酸戊糖通过3C、4C、6C、7C等演变,最终生成3-磷酸甘油醛和6-磷酸果糖。 3-磷酸甘油醛和6-磷酸果糖,可进入酵解途径。
5-磷酸核酮糖(C5) ×3 5-磷酸木酮糖 C5 7-磷酸景天糖 C7 3-磷酸甘油醛 C3 4-磷酸赤藓糖 C4 6-磷酸果糖 C6 5-磷酸核糖 C5
磷酸戊糖途径 第一阶段 第二阶段 6-磷酸葡萄糖脱氢酶 6-磷酸葡萄糖(C6)×3 6-磷酸葡萄糖酸内酯(C6)×3 5-磷酸核糖 C5 3NADP+ 3NADP+3H+ 6-磷酸葡萄糖脱氢酶 6-磷酸葡萄糖酸脱氢酶 CO2 磷酸戊糖途径 第一阶段 5-磷酸木酮糖 C5 7-磷酸景天糖 C7 3-磷酸甘油醛 C3 4-磷酸赤藓糖 C4 6-磷酸果糖 C6 第二阶段
总反应式 : 3×6-磷酸葡萄糖 + 6 NADP+ 2×6-磷酸果糖+3-磷酸甘油醛+6NADPH+H++3CO2
磷酸戊糖途径的特点 生成NADPH+H+ 生成5-磷酸核糖 3、4、5、6、7碳糖的演变
二、磷酸戊糖途径的调节 * 6-磷酸葡萄糖脱氢酶是关键酶 * NADPH/NADP+比值升高抑制, 降低激活。
三、磷酸戊糖途径的生理意义 (一)为核苷酸的生成提供核糖 (二)提供NADPH作为供氢体参与多种代谢反应
2. NADPH参与体内的羟化反应,与生物合成或生物转化有关 3. NADPH可维持GSH的还原性 A AH2 2G-SH G-S-S-G NADP+ NADPH+H+
Section V Glycogenesis and Glycogenolysis
糖原储存的主要器官及其生理意义 肌糖原,180 ∽ 300g,为肌肉收缩氧化供能 肝糖原,70 ∽ 100g,维持血糖水平
糖原的结构特点及其意义 1. 葡萄糖单元以α-1,4-糖苷 键形成长链。 2. 约10个葡萄糖单元处形成分枝,分枝处葡萄糖以α-1,6-糖苷键连接,分支增加,溶解度增加。 3. 每条链都终止于一个非还原端.非还原端增多,以利于其被酶分解。 目 录
一、糖原的合成代谢 (一)定义 糖原的合成(glycogenesis) 指由葡萄糖合成糖原的过程。 (二)合成部位 肝、肌肉细胞胞浆
(三)糖原合成途径 葡萄糖 6-磷酸葡萄糖 糖原n+1 + UDP 1-磷酸葡萄糖 UTP 糖原n UDPG 变位酶 糖原合酶 O CH2OH p 尿苷 PPi UDPG
1. 葡萄糖磷酸化生成6-磷酸葡萄糖 ATP ADP 己糖激酶; 葡萄糖激酶(肝) 葡萄糖 6-磷酸葡萄糖
2. 6-磷酸葡萄糖转变成1-磷酸葡萄糖 1-磷酸葡萄糖 磷酸葡萄糖变位酶 6-磷酸葡萄糖
3. 1- 磷酸葡萄糖转变成尿苷二磷酸葡萄糖 1- 磷酸葡萄糖 UTP 尿苷 P + 尿苷二磷酸葡萄糖 UDPG PPi UDPG焦磷酸化酶
4. α-1,4-糖苷键式结合——糖链延长 糖原n + UDPG 糖原n+1 + UDP 糖原合酶 4. α-1,4-糖苷键式结合——糖链延长 糖原n + UDPG 糖原n+1 + UDP 糖原合酶 糖原n:较小糖原分子,糖原引物,UDPG 上葡萄糖基的接受体。 UDP UTP ADP ATP 核苷二磷酸激酶
糖原合酶催化糖原糖链末端延长: 糖原(n) p p 尿苷 糖原合酶 p p 尿苷 糖原(n+1) 反应反复进行,糖链不断延长。
5.糖原分枝的形成 当糖链长度达到12 ~18个葡萄糖基时 分 支 酶 转移6~7个葡萄糖基 α-1,4-糖苷键 α-1,6-糖苷键
作为引物的第一个糖原分子从何而来? 近来人们在糖原分子的核心发现了一种名为glycogenin的蛋白质。Glycogenin可对其自身进行共价修饰,将UDP-葡萄糖分子的C1结合到其酶分子的酪氨酸残基上,从而使它糖基化。这个结合上去的葡萄糖分子即成为糖原合成时的引物。
二、糖原的分解代谢 * 定义 糖原分解 (glycogenolysis )习惯上指肝糖原分解成为葡萄糖的过程。 * 肝糖元的分解
1. 糖原的磷酸解 糖原(n) 磷酸 糖原磷酸化酶 糖原(n-1) 1-磷酸葡萄糖 (肌肉) 6-磷酸葡萄糖 H2O 葡萄糖6-磷酸酶 6-磷酸果糖 Pi (肝、肾) 葡萄糖 糖酵解途径
2. 脱枝酶的作用 ①转移葡萄糖残基 ②水解-1,6-糖苷键 脱枝酶 (debranching enzyme) 转移酶活性 α-1,6糖苷 磷 酸 化 酶 目 录
* 肌糖原的分解 Glu→G-6-P同肝糖原分解 肌肉组织中无葡萄糖-6-磷酸酶,所以6-磷酸葡萄糖不能转变成葡萄糖补充血糖,只能进入酵解途径代谢。 肌糖原的分解与合成与乳酸循环有关。
糖原的合成与分解小结 磷酸化酶 UDPG焦磷酸化酶 G-1-P UTP UDPG PPi 糖原n+1 UDP G-6-P G 糖原合酶 磷酸葡萄糖变位酶 己糖(葡萄糖)激酶 糖原n Pi 磷酸化酶 葡萄糖-6-磷酸酶(肝) 糖原n
G-6-P的代谢去路 G-6-P G(补充血糖) 6-磷酸葡萄糖内酯 F-6-P (进入磷酸戊糖途径) (进入糖酵解途径) G-1-P UDPG 葡萄糖醛酸 (进入葡萄糖醛酸途径) 合成糖原
三、糖原合成与分解的调节 糖原合成:糖原合酶 关键酶 糖原分解:糖原磷酸化酶 关键酶的特点: * 有共价修饰和变构调节二种方式。 * 都有活性(高活性)、无(低)活性二种形式,通过磷酸化和去磷酸化互变。
1. 共价修饰调节 ①两种酶磷酸化或去磷酸化后活性变化相反 磷酸化酶b:去磷酸形式,活性极低; 磷酸化酶a:磷酸化形式,高活性。 ②此调节为酶促反应,调节速度快; ③调节有级联放大作用,效率高; ④受激素调节。
- + 胰高血糖素或肾上腺素 腺苷酸环化酶 磷酸化酶的调节 ATP cAMP 蛋白激酶A(有活性) 蛋白激酶A(无活性) p 磷酸化酶b激酶 pi H2O - 糖原分解 磷蛋白磷酸酶-1
- 胰高血糖素或肾上腺素 糖原合酶的调节 腺苷酸环化酶 cAMP ATP 有活性蛋白激酶A 无活性蛋白激酶A 糖原合酶a(有活性) 糖原合酶b(无活性) p - 磷蛋白磷酸酶-1 糖原合成↓
– Pi 腺苷环化酶 (无活性) 腺苷环化酶(有活性) 激素(胰高血糖素、肾上腺素等)+ 受体 ATP cAMP PKA 磷酸化酶b激酶 激素(胰高血糖素、肾上腺素等)+ 受体 ATP cAMP PKA (无活性) Pi 磷蛋白磷酸酶-1 磷酸化酶b激酶 PKA (有活性) – 磷蛋白磷酸酶抑制剂-P 磷酸化酶b激酶-P 糖原合酶 糖原合酶-P 磷酸化酶b 磷酸化酶a-P PKA(有活性) 磷蛋白磷酸酶抑制剂
2. 别构调节 * 葡萄糖是磷酸化酶的别构抑制剂。 磷酸化酶 a (R) [疏松型] 磷酸化酶 a (T) [紧密型] 葡萄糖 2. 别构调节 * 葡萄糖是磷酸化酶的别构抑制剂。 磷酸化酶 a (R) [疏松型] 磷酸化酶 a (T) [紧密型] 葡萄糖 磷酸化酶二种构像——紧密型(T)和疏松型(R) ,其中T型的14位Ser暴露,便于接受前述的共价修饰调节。
+ * 肌肉内糖原合酶及磷酸化酶的变构效应物主要为AMP、ATP及6-磷酸葡萄糖。 肌肉内糖原代谢的二个关键酶的调节与肝糖原不同 * 肝糖原分解代谢主要受胰高血糖素的调节,而肌肉主要受肾上腺素调节。 * 肌肉内糖原合酶及磷酸化酶的变构效应物主要为AMP、ATP及6-磷酸葡萄糖。 糖原合酶 磷酸化酶a-P 磷酸化酶b AMP ATP及6-磷酸葡萄糖 +
调节小结 ① 关键酶都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。 ② 双向调控:对合成酶系与分解酶系分别进行调节,如加强合成则减弱分解,或反之。 ③ 双重调节:别构调节和共价修饰调节。 ④ 关键酶调节上存在级联效应。 ⑤ 肝糖原和肌糖原代谢调节各有特点: 如:分解肝糖原的激素主要为胰高血糖素, 分解肌糖原的激素主要为肾上腺素。
四、糖原积累症 糖原累积症(glycogen storage diseases)是一类遗传性代谢病,其特点为体内某些器官组织中有大量糖原堆积。引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。
糖原积累症分型 型别 缺陷的酶 受害器官 糖原结构 Ⅰ 葡萄糖-6-磷酸酶缺陷 肝、肾 正常 Ⅱ 溶酶体α1→4和1→6葡萄糖苷酶 所有组织 Ⅲ 脱支酶缺失 肝、肌肉 分支多,外周糖链短 Ⅳ 分支酶缺失 分支少,外周糖链特别长 Ⅴ 肌磷酸化酶缺失 肌肉 Ⅵ 肝磷酸化酶缺陷 肝 Ⅶ 肌肉和红细胞磷酸果糖激酶缺陷 肌肉、红细胞 Ⅷ 肝脏磷酸化酶激酶缺陷 脑、肝
第 六 节 糖 异 生 Gluconeogenesis
* 概念 糖异生(gluconeogenesis)是指从非糖化合物转变为葡萄糖或糖原的过程。 * 部位 主要在肝、肾细胞的胞浆及线粒体 * 原料 主要有乳酸、甘油、生糖氨基酸
一、糖异生途径 糖异生途径与酵解途径大多数反应是共有的、可逆的; 3个由关键酶催化的不可逆反应须另外的酶。 Glu G-6-P F-6-P F-1,6-2P ATP ADP 1,3-二磷酸甘油酸 3-磷酸甘油酸 2-磷酸甘油酸 丙酮酸 磷酸二 羟丙酮 3-磷酸 甘油醛 NAD+ NADH+H+ 磷酸烯醇式丙酮酸 一、糖异生途径 * 糖异生途径:丙酮酸→葡萄糖的过程。 * 过程 糖异生途径与酵解途径大多数反应是共有的、可逆的; 3个由关键酶催化的不可逆反应须另外的酶。
② 磷酸烯醇式丙酮酸羧激酶(线粒体、胞液) 1. 丙酮酸转变成磷酸烯醇式丙酮酸(PEP) ATP ADP+Pi CO2 ① GTP GDP CO2 ② 丙酮酸 草酰乙酸 PEP ① 丙酮酸羧化酶,辅酶生物素(线粒体) ② 磷酸烯醇式丙酮酸羧激酶(线粒体、胞液)
※ 草酰乙酸转运出线粒体 出线粒体 苹果酸 草酰乙酸 草酰乙酸 天冬氨酸 出线粒体
PEP 胞液 磷酸烯醇型丙酮酸羧激酶 草酰乙酸 苹果酸 天冬氨酸 天冬氨酸 苹果酸 草酰乙酸 线粒体 丙酮酸羧化酶 丙酮酸 丙酮酸 GTP GDP + CO2 胞液 天冬氨酸 苹果酸 草酰乙酸 天冬氨酸 谷氨酸 α-酮戊二酸 苹果酸 NADH + H+ NAD+ 草酰乙酸 丙酮酸羧化酶 ATP + CO2 ADP + Pi 线粒体 丙酮酸 丙酮酸
糖异生途径中,1,3-二磷酸甘油酸生成3-磷酸甘油醛时,需要NADH+H+。 由下述反应提供。 乳酸 丙酮酸 LDH NAD+ NADH+H+
② 由氨基酸为原料进行糖异生时, NADH+H+则由线粒体脂酸的β-氧化或三羧酸循环提供,NADH+H+转运则通过草酰乙酸与苹果酸相互转变而转运。 胞浆
2. 1,6-双磷酸果糖 转变为 6-磷酸果糖 3. 6-磷酸葡萄糖水解为葡萄糖 1,6-双磷酸果糖 6-磷酸果糖 果糖双磷酸酶 Pi 果糖双磷酸酶 3. 6-磷酸葡萄糖水解为葡萄糖 6-磷酸葡萄糖 葡萄糖 Pi 葡萄糖-6-磷酸酶
糖酵解与糖异生的三个不可逆反应
糖异生 1,6双磷酸果糖 6-磷酸果糖 糖酵解 6-磷酸葡萄糖 葡萄糖 果糖双磷酸酶-1 H2O Pi ADP ATP 6-磷酸果糖激酶-1 1,6双磷酸果糖 6-磷酸果糖 6-磷酸葡萄糖 葡萄糖 ADP ATP 6-磷酸果糖激酶-1 糖酵解 H2O Pi 葡萄糖-6-磷酸酶 己糖激酶 ADP ATP
⑵ 上述糖代谢中间代谢产物进入糖异生途径,异生为葡萄糖或糖原 非糖物质进入糖异生的途径 ⑴ 糖异生的原料转变成糖代谢的中间产物 生糖氨基酸 α-酮酸 -NH2 甘油 α-磷酸甘油 磷酸二羟丙酮 乳酸 丙酮酸 2H ⑵ 上述糖代谢中间代谢产物进入糖异生途径,异生为葡萄糖或糖原
目 录
二、糖异生的调节 当作用物的互变分别由不同酶催化其单向反应,这种互变循环称之为底物循环。 6-磷酸葡萄糖 葡萄糖 1,6-双磷酸果糖 葡萄糖-6-磷酸酶 己糖激酶 ATP ADP Pi 当作用物的互变分别由不同酶催化其单向反应,这种互变循环称之为底物循环。 6-磷酸果糖 1,6-双磷酸果糖 6-磷酸果糖激酶-1 果糖双磷酸酶-1 ADP ATP Pi PEP 丙酮酸 草酰乙酸 丙酮酸激酶 丙酮酸羧化酶 ADP ATP CO2+ATP ADP+Pi GTP 磷酸烯醇式丙酮酸 羧激酶 GDP+Pi +CO2
当两种酶活性相等时,则不能将代谢向前推进,结果仅是ATP分解释放出能量,因而称之为无效循环。 糖异生途径与酵解途径相互协调,主要是对前述底物循环中的后2个底物循环进行调节。
1. 6-磷酸果糖与1,6-双磷酸果糖之间 6-磷酸果糖 Pi ATP 果糖双磷 酸酶-1 6-磷酸果糖激酶-1 AMP ADP 1. 6-磷酸果糖与1,6-双磷酸果糖之间 6-磷酸果糖 Pi ATP 2,6-双磷酸果糖 AMP 果糖双磷 酸酶-1 6-磷酸果糖激酶-1 ADP 1,6-双磷酸果糖
2. 磷酸烯醇式丙酮酸与丙酮酸之间 PEP ADP 1,6-双磷酸果糖 丙氨酸 丙酮酸激酶 草酰乙酸 ATP 丙 酮 酸 乙 酰 CoA
三、糖异生的生理意义 (一)维持血糖浓度恒定 (二)补充肝糖原 三碳途径: 进食后,葡萄糖→丙酮酸、乳酸→糖异生途径→糖原
(三)调节酸碱平衡 长期饥饿,肾糖异生增强: 长期饥饿→代谢性酸中毒→pH↓→肾磷酸烯醇型丙酮酸羧激酶合成↑ → 糖异生↑ 乳酸异生为糖 糖异生↑→肾α-酮戊二酸↓ →谷氨酰胺、谷氨酸脱氨↑ →NH3 ↑ →肾小管泌NH3、泌H+ ↑。
【 】 【 】 八、乳酸循环(lactose cycle) ———(Cori 循环) ⑴ 循环过程 肝 葡萄糖 葡萄糖 肌肉 葡萄糖 糖异生 ⑴ 循环过程 肝 葡萄糖 葡萄糖 肌肉 葡萄糖 糖异生 糖酵解 丙酮酸 丙酮酸 NAD+ NADH NADH NAD+ 乳酸 乳酸 乳酸 血液 糖异生活跃 有葡萄糖-6磷酸酶 【 】 糖异生低下 没有葡萄糖-6磷酸酶 【 】
⑵ 乳酸循环是一个耗能的过程 2分子乳酸异生为1分子葡萄糖需6分子ATP。 ⑶ 生理意义 ① 乳酸再利用,避免了乳酸的损失。 ② 防止乳酸的堆积引起酸中毒。
第 七 节 血糖及其调节 Blood Glucose and The Regulation of Blood Glucose Concentration
血糖及血糖水平的概念 * 血糖,指血液中的葡萄糖。 * 血糖水平,即血糖浓度。 正常血糖浓度 :3.89∽6.11mmol/L
血糖水平恒定的生理意义 ★保证重要组织器官的能量供应,特别是某些依赖葡萄糖供能的组织器官。 脑组织不能利用脂酸,正常情况下主要依赖葡萄糖供能; 红细胞没有线粒体,完全通过糖酵解获能; 骨髓及神经组织代谢活跃,经常利用葡萄糖供能。
血糖 一、血糖来源和去路 食 物 糖 肝糖原 非糖物质 脂肪、氨基酸 氧化分解 CO2 + H2O 消化 吸收 糖原合成 肝(肌)糖原 分解 磷酸戊糖途径等 其它糖 非糖物质 糖异生 脂类、氨基酸合成代谢 脂肪、氨基酸
二、血糖水平的调节 * 主要依靠激素的调节 主要调节激素 降低血糖:胰岛素 升高血糖:胰高血糖素、糖皮质激素、肾上腺素
(一) 胰岛素 ① 促进葡萄糖转运进入肝外细胞 ; ② 加速糖原合成,抑制糖原分解; ③ 加快糖的有氧氧化; ④ 抑制肝内糖异生; (一) 胰岛素 ① 促进葡萄糖转运进入肝外细胞 ; ② 加速糖原合成,抑制糖原分解; ③ 加快糖的有氧氧化; ④ 抑制肝内糖异生; ⑤ 减少脂肪动员。
(二)胰高血糖素 ① 促进肝糖原分解,抑制糖原合成; ② 抑制酵解途径,促进糖异生; ③ 促进脂肪动员。
① 促进肌肉蛋白质分解,分解产生的氨基酸转移到肝进行糖异生。 (三)糖皮质激素 ① 促进肌肉蛋白质分解,分解产生的氨基酸转移到肝进行糖异生。 ② 抑制肝外组织摄取和利用葡萄糖,抑制点为丙酮酸的氧化脱羧。 * 在糖皮质激素存在时,其他促进脂肪动员的激素才能发挥最大的效果,间接抑制周围组织摄取葡萄糖。
(四)肾上腺素 通过肝和肌肉的细胞膜受体、cAMP、蛋白激酶级联激活磷酸化酶,加速糖原分解。主要在应激状态下发挥调节作用。
指人体对摄入的葡萄糖具有很大的耐受能力的现象。 *葡萄糖耐量(glucose tolerence) 指人体对摄入的葡萄糖具有很大的耐受能力的现象。
糖耐量试验(glucose tolerance test, GTT) 目的:临床上用来诊断病人有无糖代谢异常。 口服糖耐量试验的方法 被试者清晨空腹静脉采血测定血糖浓度,然后一次服用100g葡萄糖,服糖后的1/2、1、2h(必要时可在3h)各测血糖一次。以测定血糖的时间为横坐标(空腹时为0h),血糖浓度为纵坐标,绘制糖耐量曲线。
糖耐量曲线 正常人:服糖后1/2~1h达到高峰,然后逐渐降低, 一般2h左右恢复正常值。
三、血糖水平异常 (一)高血糖及糖尿症 1. 高血糖(hyperglycemia)的定义 临床上将空腹血糖浓度高于7.22~7.78mmol/L称为高血糖。
2. 肾糖阈的定义 当血糖浓度高于8.89~10.00mmol/L时,超过了肾小管的重吸收能力,则可出现糖尿。这一血糖水平称为肾糖阈。
3. 高血糖及糖尿的病理和生理原因 持续性高血糖和糖尿,主要见于糖尿病(diabetes mellitus, DM)。 b. 血糖正常而出现糖尿,见于慢性肾炎、肾病综合征等引起肾对糖的吸收障碍。 c. 生理性高血糖和糖尿可因情绪激动而出现。
(二)低血糖 1. 低血糖(hypoglycemia)的定义 空腹血糖浓度低于3.33~3.89mmol/L时称为低血糖。 2. 低血糖的影响 血糖水平过低,会影响脑细胞的功能,从而出现 头晕、倦怠无力、心悸等症状,严重时出现昏迷,称为低血糖休克。
3. 低血糖的病因 ① 胰性(胰岛β-细胞功能亢进、胰岛α-细胞功能低下等) ② 肝性(肝癌、糖原积累病等) ③ 内分泌异常(垂体功能低下、肾上腺皮质功能低下等) ④ 肿瘤(胃癌等) ⑤ 饥饿或不能进食