第四章 植物胚胎发育 胚发生的起始控制 极性的建立 组织分化概述 胚胎区域类型的形成 胚乳和胚柄的形成和作用 种子大小的决定
高等植物胚发生分为三个相互重叠的阶段: 1、形态建成,期间形成以茎端和根尖为顶端的极性轴,胚性分生组织的形成,辐射类型的建成及连续组织层的建立。 2、贮藏物质的合成 3、胚的脱水干燥
形态建成
Globular: Capsella bursa-pastoris
Torpedo Mature
盾片 胚芽鞘 幼芽 Corn Grain
胚发生的起始控制 两个雄配子和两个雌配子单倍体卵和二倍体中心细胞分别融合,启动了有花植物的种子发育。 受精是多数植物种子发育启动必需的,在受精前种子发育受到抑制,这种抑制是由母本基因组的特定基因在胚乳中的表达起主要控制作用,影响胚发生的起始 。 胚乳在胚的成活和发育中起重要作用,一些杂种不亲和胚不能成活的主要原因是由于胚乳功能障碍。 这种一方亲本一套特定基因表达而另一方亲本相应基因沉默的现象被称为“印记”(imprinting)。 印记有等位基因(Allelic Imprinting)印记和位点印记(Locus Imprinting)两类。母本的影响又分为孢子体基因影响和配子体基因影响。
等位基因印记 玉米的糊粉层花青素形成的R和r基因是一对显性和隐性关系的基因,没有数量效应。然而母本RR、父本rr的子代胚乳基因型RRr糊粉层总是完全红色,反向杂交子代rrR糊粉层总是斑点红色,都与母本基因型相同,不是显性作用。 10 kD的-zein是谷类作物主要贮藏蛋白,只在胚乳表达,胚中不表达,积累的量具有品种遗传特性。决定-zein在胚乳表达的dzr1基因在BSSS53品种中高表达,MO17品种中低表达。正交和反交的子代胚乳都表现母方的特性。为了排除母方亲本两个基因的剂量效应,通过雄性转位引入两个MO17 dzr1或BSSS53的dzr1,结果是一样的。BSSS53与其他背景品种杂交却显示剂量效应,而MO17作为母本杂交一直具有母方印记,当母本是4倍体,父本是二倍体,种子小,反之种子大,显示母本的抑制生长作用和父本的促进生长作用。
负责小RNA合成、二倍体孢子母细胞参与基因沉默机制的DICER-like1(DCL1)也是一个引起母体效应的基因。这样由亲本的一对等位基因决定性状的现象称为等位基因印记,又称孢子体效应。
位点印记和分子机理 位点印记指从DNA结构或染色体结构上对基因的控制表现为母方或父本的表型。这些控制通过DNA甲基化或染色体结构修饰酶完成。这些修饰酶表现为由母方或父方基因型控制,决定一批子代基因的表达。 拟南芥的MEDEA(MEA)、FERTILIZATION-INDEPENDENT ENDOSPERM(FIE)、 FERTILIZATION-INDEPENDENT SEES2(FIS2)是三个表现出相似母方亲本印记的基因。FIE、MEA、FIS2的功能是抑制未受精胚乳和胚的生长。它们的突变体表型相似,未受精突变体胚乳和果实发育,种子不育;受精突变体种子胚乳过量繁殖,细胞化延迟,胚发育终止,最后种子不育。
父本的等位MEA基因被通过FIS复合体介导的组蛋白H3 Lys27甲基化修饰,同时MET1以MEA基因启动子和3`下游区域中CG为目标甲基化父本等位基因。 DNA糖基化酶(DNA Glycosidase DEMETER,DME)在中心细胞特异表达,从母本MEA等位基因切除5-甲基胞嘧啶而使其活化,母本等位基因FWA和FIS2在雌配子体中的表达也依赖DME的活性,而父本等位基因FWA和FIS2的沉默需要DNA甲基化,从而建立亲本专一的甲基化类型。
发育早期母本的基因在胚发育定时起始中起重要作用 。 玉米种子发育早期(受粉后0天和3天)表达的16个基因只有母方遗传的等位基因在胚和胚乳中检测到转录表达。如豆球蛋白(legumin), 玉米素(beta-zein), 球蛋白(alpha-globulin),都是在受粉后0天和3天只表达母方的基因型,受粉后7天才表达父本基因型。 植物胚发生早期的母本显性控制主要是由DNA甲基化引起。 母本反义甲基化酶MET1a/s种子增大,父本MET1a/s种子减小。MET可以使FWA基因和FIS2基因在雄配子体沉默,而FWA基因和FIS2基因在雌配子体中心细胞表达,在受精后的胚乳中由母本基因表达,同时父本等位基因沉默,由此决定它们是印记基因 。
用met1-3/+做母本与野生型父本杂交,子代所有种子都显示met1-3的表型,即种子增大,而不是按基因型表现为各一半。反之,野生型母本与met1-3/+父本杂交,大小种子各占一半,说明雄配子中MET1功能的丧失使父本印记的生长抑制基因表达,引起胚乳和种子大小减小。 有一种亲本冲突假说解释胚发育早期母本控制现象。双方亲本的基因都倾向维护自身的遗传利益。父本倾向促进自身所在胚的发育,而母本由于多个胚的存在,为了平衡自身营养,倾向在一定阶段内抑制胚的发生 。
极性的建立 植物的极性可以从空间三维的三个方向体现:从生长的基部到顶端分为顶端(apical)-基部(basal)极性,以主茎中心为轴分为近轴端(adaxial)和远轴端(abaxial),两侧对称的器官有背腹之分。
植物的发育是一个连续的过程,受精卵合子是在一个极性的环境中起始发育。从球型胚开始的分化也是在极性环境中进行。但母体的极性环境并不是决定胚极性建立的因素。 胚发生从合子的不对称分裂开始,形成顶端小细胞和基部大细胞。基部的细胞含液泡,以后发育形成胚柄,顶端细胞细胞质多,发育成胚。胚柄6~9个细胞排成列,最上一个细胞参与胚的发生,作为胚根分生组织的一部分,胚柄为胚发生提供营养的通道。当胚发育到鱼雷期时,胚柄进入细胞程序化死亡。
顶端基部极性在合子分裂前合子中就已经确立。首先卵细胞处于胚囊的珠孔端,是处于极性环境中。一些卵细胞内含物的分布呈现极性。 DNA的甲基化影响极性分化 拟南芥MET1突变在胚发育早期影响细胞分裂的方式,类似于生长素梯度建立突变体的表型,其顶端-基部极性被破坏。 用生长素反应启动子DR5与绿色荧光蛋白连接,在met1突变胚中,DR5:GFP均匀分布。表明MET1进行的DNA甲基化对发育中胚中生长素梯度的建立和保持是必需的。 PIN1是生长素流出载体,参与生长素梯度的建立,在met1突变胚中也均匀分布,说明DNA甲基化也影响PIN1的表达。但并未发现该基因任何部位发生了甲基化,因而推测是间接影响表达 。
Wild-type (A) and met1 mutant (B) embryos 3 d after pollination. DNA Methylation in Arabidopsis Embryogenesis.
胚发生过程的细胞分裂和分化受到遗传和表观遗传因素的高度调控。 基因组DNA在胚发生过程中经历了重新编程过程,一些基因失活,一些基因进行转录。DNA的甲基化和RNA聚合酶II在这个过程中起重要作用。 植物中有三种DNA甲基转移酶(DNAmethyltransferase)基因: MET1, Dnmt1 类似基因,编码一个主要CpG保持甲基转移酶, CHROMOMETHYLASE3 (CMT3), 编码植物专一的主要作用在CpNpG 和 CpNpN 基团的DNA 甲基转移酶。 DOMAINS REARRANGED1(DRM1)和DRM2, 与 Dnmt3 同源,在植物中进行主要的重新开始的甲基化。 甲基化本身使DNA沉默,去甲基化引起基因活性下降可能是通过对其抑制因子的甲基化激活该基因 。
Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently
Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo.
several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos were identified and confirmed parent-oforigin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots.
The parental conflict hypothesis predicts that the mother inhibits embryo growth counteracting growth enhancement by the father. In plants the DNA methyltransferase MET1 is a central regulator of parentally imprinted genes that affect seed growth. combine cytological, genetic and statistical analyses to study the effect of MET1 on seed growth. the loss of MET1 during male gameto genesis causes a reduction of seed size, presumably linked to silencing of the paternal allele of growth enhancers in the endosperm, However, no evidence for a similar role of MET1 during female gametogenesis. Rather, the reduction of MET1 dosage in the maternal somatic tissues causes seed size increase. MET1 inhibits seed growth by restricting cell division and elongation in the maternal integuments that surround the seed. the regulation of embryo growth by MET1 results from a combination of predominant maternal controls, and that DNA methylation maintained by MET1 does not orchestrate a parental conflict
Whether deposited maternal products are important during early seed development in flowering plants remains controversial. RNA interference–mediated downregulation of transcription is deleterious to endosperm development but does not block zygotic divisions. RNA POLYMERASE II is less active in the embryo than in the endosperm. This dimorphic pattern is established late during female gametogenesis and is inherited by the two products of fertilization. This juxtaposition of distinct transcriptional activities correlates with differential patterns of histone H3 lysine 9 dimethylation, LIKE HETEROCHROMATIN PROTEIN1 localization, and Histone H2B turnover in the egg cell versus the central cell. Thus, distinct epigenetic and transcriptional patterns in the embryo and endosperm are already established in their gametic progenitors. Furtherly, the non-CG DNA methyltransferase ROMOMETHYLASE3 (CMT3) and DEMETERLIKE DNA glycosylases are required for the correct distribution of H3K9 dimethylation in the egg and central cells, respectively, and that plants defective for CMT3 activity show abnormal embryo development. cell-specific mechanisms lead to the differentiation of epigenetically distinct female gametes in Arabidopsis thaliana. They also suggest thatthe establishment of a quiescent state in the zygote may play a role in the reprogramming of the young plant embryo.
Balanced maternal and paternal genome contributions are a requirement for successful seed development. Unbalanced contributions often cause seed abortion, a phenomenon that has been termed ‘‘triploid block.’’ Misregulation of imprinted regulatory genes has been proposed to be the underlying cause for abnormalities in growth and structure of the endosperm in seeds with deviating parental contributions. a mutant forming unreduced pollen identified enabled to investigate direct effects of unbalanced parental genome contributions on seed development and to reveal the underlying molecular mechanism of dosage sensitivity. This provides evidence that parent-of-origin–specific expression of the Polycomb group (PcG) gene MEDEA is causally responsible for seed developmental aberrations in Arabidopsis seeds with increased paternal genome contributions. Thus imprinted expression of PcG genes is possible an evolutionary conserved mechanism to balance parental genome contributions in embryo nourishing tissues.
The trimethylation of lysine 27 of histone 3 (H3K27me3) is the landmark of Polycomb Repressive Complex2 (PRC2) function and is associated with gene repression. In homozygous null mutants of Arabidopsis PRC2, H3K27me3 is globally lost in these mutants. Surprisingly, initial body plant organization and embryo development is largely independent of PRC2 action, which is in sharp contrast to embryonic lethality of PRC2 mutants in animals. However, PRC2 is required to switch from embryonic to seedling phase, and mutant seeds showed enhanced dormancy and germination defects. Indeed, many genes controlling seed maturation and dormancy are marked by H3K27me3 and are upregulated upon loss of PRC2. the here-discovered key role of PRC2 during the developmental phase transition from embryo to seedling growth reveals the adaptation of conserved molecular mechanisms to carry out new functions.
where imprinted gene regulation is essential for embryonic development. However, it seems to be more flexible in plants, as imprinting requirements can be bypassed to allow the development of clonal offspring in apomicts.
在哺乳动物配子发生和胚发生过程中,原来的甲基化完全丢失,由从头合成的Dnmt3a 和 Dnmt3b对完全无甲基化的DNA进行甲基化。DMR1和DMR2与其有同源序列。 met1突变胚中一些参与组织分化形态建成的基因也发生变化,YODA (YDA)表达增加,WUSCHEL-RELATED HOMEOBOX2 (WOX2)和WOX8表达下降。YDA编码MAPKKK,参与胚和胚柄专一特性功能。WOX2和 WOX8分别在发育胚的顶端和基部细胞系专一表达, 编码影响细胞分裂的homeodomain转录因子。 通过影响生长素分布和与组织分化有关基因的表达,基因组DNA甲基化控制胚极性的建立。
生长素的极性分布决定顶端基部极性 生长素运输方向在早期胚发生阶段是从基部向上运输,即从胚柄向原胚方向运输,到32细胞球型胚阶段,生长素运输方向开始改变为向基部运输 。 生长素在胚发生过程中运出细胞的载体在拟南芥是PIN1、PIN3、PIN4 、 PIN7 。PIN7在两细胞阶段基部细胞的顶端膜表达,一直到32细胞阶段在胚柄细胞顶端膜表达,这种表达方式说明生长素运输方向是从基部向上运输。DR5报告基因是在-葡(萄)糖苷酸酶(-glucuronidase ,GUS)或绿色荧光蛋白(green fluorescent protein ,GFP)前启动子中加上多个重复的生长素反应因子(Auxin Response Factor,ARF)作用的生长素反应元件(auxin response elements ,auxREs)TGTCTC,报告基因可以被生长素激活,用来反映生长素的存在和作用。在野生型胚中,DR5在顶端细胞表达,但应用生长素抑制剂或在pin7突变体中DR5在基部细胞表达,进一步证明早期胚中生长素从基部向顶部运输 。
wild-type Immunolocalization of AtPIN1. The presumptive auxin efflux protein AtPIN1 is normally localized to cell membrane on the basal side of immature vascular cells. In the emb30/gn mutant, there is a correlated loss of coordinated AtPIN1 localization and of overall apical-basal cell polarity. Bars = 20 mM. wild-type dermatogen early globular emb30/gnom emb30/gnom early globular dermatogen AtPIN1 localization and cell polarity
在32细胞的球形胚阶段,之前一直无极性分布在原球胚中的PIN1开始极性分布在原维管束区,在细胞的基部极性分布,同时PIN4蛋白开始积聚在由胚柄最上方细胞形成的原胚中的垂体区,PIN7也转而分布到胚柄细胞的基部区域,DR5报告基因在垂体和胚柄表达。在PIN1和PIN4的共同作用下,PIN7改变生长素运输方向,从球型胚中向胚柄运输,在基部积累 。 在心形胚的各种组织形成后,PIN3 mRNA才在胚根极表达,所以对顶部-基部类型的形成没有作用 。
生长素的运入是通过质子驱动的生长素氨基酸透性酶家族AUX1蛋白进行的,AUX1运入载体蛋白在一些细胞可能不均匀分布,在顶端基部轴方向存在于与运出载体蛋白相反的表面。在侧向面AUX1运入载体蛋白可以和运出载体蛋白在相同的表面。由此,通过将侧向运出的生长素重新运入,可以将生长素保持在一列细胞,防止生长素影响邻列细胞。
生长素信号传导的途径中基因突变也会影响顶端-基部极性的建立。 MONOPTEROS(MP)基因编码核定位、含有与AUXIN RESPONSE FACTOR 1(ARF1)相似的DNA结合区域(AUXIN RESPONSE ELEMENT,AREs)特性的转录因子。细胞正确轴向化和维管束排列需要MP,决定胚轴、根、根分生组织和根冠的形成。MP最初广泛表达于胚中,以后限于原形成层。MP可能通过生长素控制的反应在早期控制轴的形成,晚期和胚后阶段控制维管束的形成 。 拟南芥BODENLOS(BDL)基因参与生长素介导的顶部-基部类型的分布。Bdl突变体在二细胞阶段就发生变化,顶部细胞进行水平分裂,而不是垂直分裂,导致缺乏胚根。bdl突变体对合成生长素2,4-D不敏感。 BDL基因只影响胚根,不影响侧根的发育 。
生长素决定的极性形成是由于它引起的细胞内的各种生理生化反应和形态建成反应。生长素分布的不均匀引起了生理生化反应和生长反应的不均匀分布,从而造成形态建成的极化。
细胞壁上极性分化的信号分子 细胞壁一些蛋白可作为极性分化的信号分子,如AGP。AGP抗原簇被JIM8识别。能继续分裂分化形成胚的细胞在细胞壁上有JIM8,不能继续分裂的细胞没有JIM8。AGP具有诱导细胞不等分裂的特性。 Yariv结合AGP,降低茎和根的生长速率(细胞延长和辐射扩张)。 N乙酰葡萄糖氨和脂寡糖(4,5-b1,4 N乙酰葡萄糖骨架)等其他分子可以恢复停留在球型胚阶段的内切几丁质酶类似物ts11突变,起信号分子作用。对这个信号最快的反应是细胞质膜去极化,细胞内pH增高,细胞内钙离子水平的变化 。
细胞内物质的极性运输 拟南芥GNOM(GN)蛋白在高尔基颗粒运输、蛋白交通中起重要作用,brefeldin A抑制其功能。brefeldin A抑制fucus细胞壁分泌和极性轴固定,其合子分裂不对称的建立和顶端基部分类也受到抑制。 GNOM决定胚和器官发生过程中生长素的极性运输,gnom突变体中生长素反应基因表达分布失去极性 。 酵母SEC7也有相似的功能,在细胞壁延长和细胞分裂中起作用,将细胞膜和细胞壁合成中需要的蛋白定向运到指定位点。 JIM8沿着顶端基部轴的不对城分布为不对称运输提供了信息。
Scarlet Runner Bean Seed and Embryo Development. DAP en, endothelium cc, central cell; ec, egg cell sy, synergid; a, apical region of proembryo; es, endosperm; s, suspensor; b, basal region of proembryo; c, cotyledon; cr, chalazal region;; ep, embryo proper; hl, hilum; m, micropyle; mr, micropylar region; o, unfertilized ovule; sb, suspensor basal region; sn, suspensor neck region;. hilum n.核, 脐, 粒心 Endothelium n.[解]内皮, [植]内种皮 cotyledon Globular heart The Plant Cell, Vol. 13, 2409–2425, November 2001,
ovules suspensors RNA Gel Blot Analysis of Putative Suspensor-Specific cDNA Clones. RNA from suspensors of 6-DAP globular-stage embryos (S), unfertilized ovules (Ol), whole seed at 2 DAP (2), whole seed at 3 DAP (3), 6-DAP seed micropylar regions(6m), 6-DAP seed chalazal regions (6c), and leaves (Lf) The Plant Cell, Vol. 13, 2409–2425, November 2001,
region; sy, synergid. Bars 50m. (A) Bright-field photograph of a 7-DAP seed. G564 (B, G), C541 (C,H), G563 (D,I) C541 sense control(E,J) (F) Bright-field photograph of an unfertilized ovule. ec, egg cell; en, endothelium; ep, embryo proper; es, endosperm; in, integument; s, suspensor; sb, suspensor basal region; sn, suspensor neck region; sy, synergid. Bars 50m. The Plant Cell, Vol. 13, 2409–2425, November 2001,
2-DAP embryo 3-DAP embryo 4-DAP embryo 7 -DAP embryo Exposed for 6 months Sense G564 C541 2-DAP embryo 3-DAP embryo 4-DAP embryo 7 -DAP embryo a, apical region of proembryo; b, basal region of proembryo; ec, egg cell; ep, embryo proper; s, suspensor; sb, suspensor basal region; sn, suspensor neck region; sy, synergid. Bars 50 m. G564 and C541 mRNAs are localized specifically within the suspensor region of globular-stage embryos. The Plant Cell, 13, 2409–2425,2001,
Preglobular Globular Heart Torpedo G564 mRNA GUS mRNA G564 mRNA Localization Pattern within the Axis of an Early Maturation–Stage Embryo. G564 transcripts were present in the axis but were concentrated primarily within the meristematic zone at the axis tip. GUS assay The Plant Cell, Vol. 13, 2409–2425, November 2001,
The Plant Cell, Vol. 13, 2409–2425, November 2001,
Basal cell–specifying morphogenetic factors (yellow triangles) are distributed asymmetrically in the cytoplasm of the egg cell or zygote. Upon asymmetric division, these factors are inherited by the basal cell and trigger the transcription of basal region–specific genes such as G564 and, eventually, the specification of the suspensor. The Plant Cell, Vol. 13, 2409–2425, November 2001,
RNA聚合酶II的转录调控 RNA聚合酶II复合体催化mRNA的合成,其核心部分对基因的转录是相同的,转录的专一性在于影响RNA聚合酶II复合体结合到DNA的多种相互作用因子和亚单位的不同。 鉴定了embryo defective突变体影响胚发育的有750个基因,在鉴定的250个基因中,有5%是转录调控因子。 对一个胚发育停止在16细胞阶段的突变体的研究,发现是由于GRP23功能的丧失。这个基因编码含亮氨酸拉链、N端9个PPR、C端具有Trp-Gln-Gln (WQQ)重复的多肽。 GRP23通过C端WQQ与RNA聚合酶II复合体的亚单位III作用,在配子体中大量表达,在幼胚胚乳和营养分生组织中少量表达。 亮氨酸拉链的作用是通过形成同源或异源二聚体进行蛋白-蛋白之间的作用,同时以基本的方式与DNA保守序列结合。
PPR序列也是序列专一性的RNA或DNA结合保守序列。PPR蛋白是植物中一个大的蛋白家族,拟南芥中有400多个成员。许多PPR成员是RNA结合蛋白,参与转录后mRNA的处理调控,常在线粒体和叶绿体。有些与育性的恢复有关。 GRP23的结构和作用不同,可能和吸引RNA聚合酶II的结合来控制早期胚发生必需的基因的表达有关。 26S蛋白酶复合体由蛋白降解核心蛋白酶和调控颗粒(regulatory particle,RP)两部分组成,在发育过程中起着重要作用。拟南芥RPN1亚单位有两种异构体a和b,在配子发生和胚发生过程中有同样的功能,但不重复。rpn1a突变体胚发育停止在球型胚阶段,Cyclin B1蛋白没有降解,表皮层形态异常,说明细胞分裂周期异常。rpn1b突变体对胚发生影响不大,RPN1b基因是在RPN1a启动子的控制之下表达 。
胚胎区域类型的形成 种子结构的胚起源 组织间的位置效应
中心区域细胞分裂方向是平周,细胞保持等直径。形成窄的原形成层细胞。 原形成层阶段 早球型胚阶段 八细胞阶段 Dermatogen tangential 表皮原的切向分裂形成内部细胞和表皮细胞。. 分裂方向是顶部基部 中心区域细胞分裂方向是平周,细胞保持等直径。形成窄的原形成层细胞。 弯曲子叶阶段 三角胚阶段 中鱼雷胚阶段 心型胚阶段 子叶与胚轴进一步增大,展现辐射对称类型。 子叶中维管分化已经可见。. 分化器官中维管类型 上部细胞形成对称的子叶原基 包括l表皮、基本组织和维管组织的辐射对称结构形成。 子叶向外生长,胚柄细胞分裂形成三层
顶端区域类型的形成 拟南芥16细胞阶段中内部四个顶端细胞表达WUS基因,它是早期茎端分生组织的标记。在一系列不对称细胞分裂中表达并决定未来子叶的发育。GURKE也参与决定顶端分生组织的结构。
CLAVATA 基因(CLV1,2,3)组成的信号传导系统通过抑制WUS启动子控制的转录控制WUS的表达,保持干细胞特性。 CLV3是干细胞分泌的小分子蛋白,通过在几个细胞直径范围内运动,与异源二聚体受体CLV1/CLV2 作用,启动将WUS表达抑制在小范围内的活性。CLV1/CLV2受体分布范围决定CLV3作用范围。通过CLV途径,维持干细胞在一定大小。CLV3过量,减小分生组织。 WUS促进CLV3在分生组织顶端的表达,WUS还可以在同一个细胞内促进CLV3表达。同时CLV3的表达还依赖STM(shoot meristermless)的表达,但STM过量表达不能诱导在非分生组织合成CLV3,而WUS和STM在叶中共表达可以形成CLV3。说明CLV系统与STM、WUS在决定分生组织中共同作用,控制分生组织的分布和范围。 两个编码蛋白质磷酸化酶的基因POLTERGEIST (POL) 和PLL1是CLV途径中间物,对干细胞的特性是必需的 。
WUS可能通过抑制极性有关基因的表达保持干细胞特性。水稻WUS类似基因抑制YABBY的表达,而YABBY是侧生分生组织与茎顶端分离、叶发育近远轴极性分化的必需基因 。 STM(shoot meristermless)在胚发生的后球型阶段胚顶端的中心区域独立于WUS表达,是一个KNOX蛋白,限制在胚顶端一套特定细胞内决定其分生组织器官专一性。 STM诱导与细胞分裂有关的KNAT基因和CycB1;1表达,但不诱导干细胞特性形成,WUS诱导干细胞特性形成,但不诱导KNAT基因和CycB1;1表达,它们功能独立,共同表达决定和增强分生组织特性 。 CLV1(clavata1) 编码一个膜结合的激酶受体,在心型期以后也在茎顶端表达,独立于STM,可能根据位置信息起着平衡未分化分生组织和器官分化的平衡作用。clv1突变体分生组织增大,PT(primordia timing)也具有相同的效果,但作用途径不同。 ZLL基因从早期到叶原基形成在位于顶端分生组织下的原微管组织表达,影响STM的表达。
顶端中心-周围区域的形成 STM始终在顶端分生组织表达,在促进早期子叶的分离中起重要作用。 ANT(aintegumenta)在茎端两侧的两组细胞表达,其以后形成子叶。
Positioning of lateral organs Embryonic expression of CUC2 and STM globular early heart globular early heart CUC2 CUC2 CUC2 CUC2 torpedo globular heart-stage heart-stage STM STM CUC2 STM Red line in diagrams marks the position of the section, except for frontal sections in A, C, F and G. Note that the CUC2 expression domain is elongated (central in A versus extended in B) already in the globular embryo, documenting bilateral symmetry in embryos of this stage. F-H: STM expression domains overlap except for the protoderm表皮原, where only STM is expressed (arrowheads in A-C and F, G). c, cotyledons. Bars = 40µm, The Arabidopsis Book ©2002 American Society of Plant Biologists
Positive and negative regulators of STM expression A: In the early embryo, the functionally redundant genes CUC 1 and 2 (CUC 2 expression, dark blue) are required for separation of the cotyledons and for STM expression (light blue). Expression of STM across the entire diameter of the embryo is likely to promote cotyledon separation by suppressing founder cell identity in the periphery. After heart-stage, CUC genes do not seem to be required for STM expression as the expression domains no longer overlap. B: STM is permanently expressed and required in the SAM to suppress AS1 activity, which confers founder cell identity to cells in lateral shoot organs (green). The Arabidopsis Book ©2002 American Society of Plant Biologists
决定子叶分离的CUP SHAPED COTYLEDON 1 CUC1和CUC2基因的表达需要MP和PIN1的活性,后两者都与生长素运输有关,进一步证明生长素在顶端分区中的作用。CUC具有激活STM在中心区域条表达的功能,STM也与PIN1一起促进CUC1的活性,同时对CUC2正确的空间分布是必需的 。 PRS/WOX3 和WOX1基因在侧生原基表达,标志着侧生原基的形成 。 拟南芥中有15个WUS类型的基因(WUS1和14个WOX, WUSCHEL - RELATED HOMEOBOX)。五个(WUS1、WOX3/PRS1、WOX5、WOX8、WOX9)在植物分生组织的各种干细胞具非自发性功能,且具有组织专一性。WUS在茎顶端干细胞、WOX5在根干细胞、WOX3在侧生分生组织、WOX4在茎和叶的维管束前形成层中决定干细胞分生特性 。
表皮的分化 分子水平表皮的特化在胚发生的两细胞阶段表现出来,homeodomain 蛋白ATMLl(Arabidopsis thaliana meristem - LI layer)在合子第一次不对称分裂后的顶端细胞特异表达,然后持续均匀在原胚表达直到16细胞原胚。16细胞原胚中ATML1特异在原表皮层表达。在鱼雷型胚阶段,ATML1表达沉默,到成熟胚期才在茎顶端分生组织的L1层表达 。 在心型胚阶段,与ATMLl同源的homeodomain 蛋白基因GLABRA2(GL2)开始在原表皮层表达,在鱼雷型胚到成熟胚阶段限制在未来非根毛表皮细胞中表达。心型胚阶段中GL2的表达需要WEREWOLF (WER)的功能。当GL2的表达在表皮层建立的同时,WER和CAPRICE (CPC)在鱼雷型胚的整个根表皮层表达。 成熟胚中,WER正调控CPC的转录,GL2负调控WER的转录。GL2在鱼雷型胚对未来非根毛表皮细胞特性的决定与WER和CPC的活性相关,WER控制GL2的表达,CPC也在胚轴中调节GL2的表达。在形态上,WER和GL2是非根毛细胞特性和细胞延长发育的正调控因子,CPC是根中根毛细胞发育的正调控因子。
胚中心区域类型的形成 中部区域在辐射方向分化,从中心的中柱向外形成皮层和表皮。 SCR在SHR下游作用,启动平周分裂,形成两层基本周围组织,可能在内层保持内皮层的特性 。 在SHR启动子控制下的绿色荧光蛋白报告基因仅在三角形阶段胚的中心原形成层表达。在发育过程中表达保持在维管组织。SHR::GFP 翻译融合蛋白存在于中柱,但选择性地在内皮层细胞核中积累 。 SHR在胚中维管柱表达,SHR 蛋白分泌到维管柱周围的细胞中, 在那里它诱导内皮层专一的基因SCR的表达 。
基部区域的形成 根部形成胚的大部分轴性,已经发现决定胚轴和胚根的很多突变体。这个区域还发现辐射对称性,它决定胚轴和胚根的类型,辐射对称性也是在胚发生阶段确定的。 The Arabidopsis root meristem is a highly ordered cell assembly. A 3D view of the same embryonic root meristem - reconstructed from confocal microscopy data. Different cell types are colour coded. Bright red = root cap; green = epidermis; yellow = cortex; blue = endodermis; orange =endodermis/cortex initials, maroon = central zone. Cells within the stele have been omitted for clarity.
MP基因编码生长素反应因子ARF5,与生长素调控蛋白的启动子结合。BDL(BODENLOS)与MP结合,抑制MP的功能。mp和bdl的突变使WOX9在八细胞胚中不能响应上部信号,从根区移向中部区域,说明WOX9是BDL/MP信号途径的目标。 MP可能通过生长素控制的反应在早期控制轴的形成,晚期和胚后阶段控制维管束的形成。 AXR6(auxin resistant6)编码泛素蛋白连接酶(SKP1/CULLIN/F-BOX PROTEIN),可能介导生长素引起的蛋白质降解,突变造成胚和胚根细胞分裂类型异常。AXR6和BDL1作用的相似性说明它们可能在相同的途径作用 。
mRNA in situ expression analysis of BDL and MP in developing embryos. globular with lens-shapedcell Octant early globular heart torpedo subepidermal proembryo BDL mRNA MP mRNA vascular precursor BDL mRNA 4cell MP mRNA mRNA in situ expression analysis of BDL and MP in developing embryos. Arrowheads mark the central root cap in (I,J). Bar, 20 μm. bdl mutation does not abolish expression of the MP gene. bdl mutant GENES & DEVELOPMENT 16:1610–1615 . 2002
拟南芥BODENLOS(BDL)基因参与生长素介导的顶部-基部类型的分布。Bdl突变体在二细胞阶段就发生变化,顶部细胞进行水平分裂,而不是垂直分裂,导致缺乏胚根。bdl突变体对合成生长素2,4-D不敏感。 BDL基因只影响胚根,不影响侧根的发育。 BDL/BDL BDL/bdl bdl/bdl leaf silique seedling GENES & DEVELOPMENT 16:1610–1615 . 2002
the C terminus of MP (GN/ARF5Ct). GFP-BDL GFP with nuclear localization signal GFP with nuclear export signal (A–F) Transient expression of 35SGFP-BDL in parsley protoplasts. Note strong accumulation of BDL-GFP in patches within the nucleus. (G) Yeast two hybridinteraction assays. The strength of interaction is shown in activity units of the -galactosidase reporter ( -Gal). BDL IAA12)interacts with itself and with the C terminus of MP (ARF5) comprising domains III and IV (ARF5Ct). Negative controls: BDL tested against the empty prey vector (IAA12/.), and GNOM tested against the C terminus of MP (GN/ARF5Ct). GFP-BDL GFP fluorescence bright-field illumination images Nuclear localization and interactions of BDL protein. GENES & DEVELOPMENT 16:1610–1615 . 2002
arrowheads mark the boundary between hypocotyl and root. Root end of bent-cotyledon embryos bent-cotyledon pBDLGUS pIAA3GUS triangular early-torpedo arrowheads mark the boundary between hypocotyl and root. pBDLGUS pIAA3GUS at higher magnification. Bar for A–H, 20 μm. Four-day-old seedlings IAA gene promoter-GUS reporter expression in embryos and seedlings. IAA genes may limit their in vivo interactions with ARF proteins. GENES & DEVELOPMENT 16:1610–1615 . 2002
BDL作用模式:生长素参与决定胚根命运,在心型胚期间,静止区对其以上细胞传递信号,阻止分化,以下胚根发育开始。 AXR6(auxin resistant6)突变造成胚和胚根细胞分裂类型异常,是因为生长素介导的位置或细胞分化命运的异常。 AXR6和BDL1作用的相似性说明它们可能一相同的途径作用。
HOBBT(HBT)突变体的异常在四细胞以后的阶段表现出来,成熟胚缺乏静止中心和根冠,胚和幼苗中胚根分生组织缺乏,不形成次生根。它的作用机理和以上两个基因可能不同 。 Appearance of seedlings 7 days after germination on 0. 8% plantagar. (A) Wild-type seedling. (B) hbt2311 homozygote; (C) hbtGVII-24/1 homozygote; (D) hbte56 homozygote. Mutant seedlings are shown at 4´ magnification of the wild-type seedling.
WOODEN LEG (WOL)基因编码细胞分裂素受体基因,被细胞外细胞分裂素激活,感受细胞表面的细胞分裂素信号,调控微管束原基中与细胞分裂有关的基因表达。wol突变体根和胚轴维管束没有韧皮部形成,中柱细胞层减少 。 fass突变具有多个子叶和顶端分生组织的发育,同时生长素表达是野生型的2.5倍,当将胚根从完整植物移去,胚根延长2.5倍; hydra在胚轴处有多条维管束穿过,胚根缩短,短胚根现象可用乙烯抑制因子银离子恢复。这些现象可能由生长素异常运输或异常作用引起,过高的生长素引起乙烯的合成。上部信号抑制根的生长。辐射膨胀的顶部或中心区域的生长切断到根部的生长素运输或生长素梯度分布。
Generation of apical-basal pattern elements during Arabidopsis embryogenesis. Left to right: 2-cell, octant, heart stage embryos and seedling. Thick lines: divisions separating apical (A), central (C) and basal (B) embryo regions (Jürgens, 1995). HY, hypophysis. Cell groups which give rise to seedling structures are indicated in the heart stage embryo. SAM, shoot apical meristem. COT, cotyledons; H, hypocotyl; ER, embryonic root; RM, root meristem; RMI, root meristem initials; QC, quiescent centre; COL, columella root cap. Development 125, 521-531 (1998)